Rapid Communication

Viscosity of aqueous solutions of some alkali cyclohexylsulfamates at 25.0 °C

Darja Rudan-Tasic *, Cveto Klofutar, Jaka Horvat

Department of Food Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana SI-1000, Slovenia

Received 2 July 2003; received in revised form 6 November 2003; accepted 6 November 2003

Abstract

The dynamic viscosity of aqueous solutions of cyclohexylsulfamic acid and of its lithium, sodium and potassium salts was measured in the concentration range from 0.02 to 0.70 mol dm$^{-3}$ (the potassium salt only up to 0.20 mol dm$^{-3}$ because of its poor solubility) at a temperature of 25.0 °C. The data for relative viscosity, which were calculated from the dynamic viscosity, were analysed with the help of the extended Jones–Dole equation and the viscosity coefficients A_g, B_g and D_g were evaluated. The B_g coefficients of the salts were divided into their ionic contributions and the ionic B_g value for the cyclohexylsulphamic ion was determined. From the viscosity coefficient B_g the partial molar Gibbs energy of activation for viscous flow at infinite dilution was calculated for the investigated solutes and interpreted in terms of relative solute effects on the solvent in the ground and in the transition states. Additionally, the hydration number of the solute was determined and some correlation between the transport properties of solutions of cyclohexylsulphamates and their relative sweetness was found.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Viscosity; Data; Gibbs energy; Hydration numbers; Cyclohexylsulfamates

1. Introduction

Water is the medium for all sweet taste chemoreception processes (Birch, 2002). According to the three step model of sweet taste chemoreception (Mathlouthi, Bressan, Portmann, & Serghat, 1993), the first step requires that the hydrated molecule reaches the region of sweet receptors in the taste epithelium. Such an accession depends on solution properties, e.g., volumetric properties, but transport properties are also relevant to the kinetics of mouth movement during tasting. Hydration effects are extremely sensitive to the stereochromatic details of the solute and are also affected by the molecular configuration (Franks, 2000). Conversely, it is expected that the structure of water would affect the conformation of a sweetener molecule in solution. All these modifications play an important role in the physicochemical properties of the solution and influence the accession of stimuli to the receptor site and the resulting perception of sweet taste.

According to our knowledge, most of the literature viscosity data are reported for sugar solutions, and surprisingly few viscosity data have been published for aqueous solutions of intense artificial sweeteners at 25.0 °C, especially for electrolytic types of solute (for example Mathlouthi et al., 1993). Therefore this study concentrates on the viscosity properties of aqueous solutions of some alkali salts of cyclohexylsulfamic acid with the aim of elucidating the effect of the individual ionic species on the solution properties and, consequently, on the taste quality.

2. Materials and methods

The specifications of the compounds employed, i.e., commercially available cyclohexylsulfamic acid (HCy) and its sodium salt (NaCy), as well as of lithium cyclohexylsulfamate (LiCy) and potassium

*Corresponding author. Fax: +386-1-25-66-296.
E-mail address: darja.rudan.tasic@bf.uni-lj.si (D. Rudan-Tasic).
cyclohexylsulfamate (KCy), synthesized in our laboratory, were described previously (Rudan-Tasic & Klofutar, 2004).

The investigated solutions were prepared on a molar concentration scale by precise weighing of the solute, to \(\pm 1 \times 10^{-3}\) g (AT201 Mettler Toledo) and dilution with doubly-distilled and boiled water in a calibrated 25.0 cm\(^3\) volumetric flask (Hirschmann).

The solution densities \(d\) were measured at (25.00 ± 0.01) °C using an A. Paar digital densimeter (Model DMA 60) with a reproducibility of \(1 \times 10^{-5}\) g cm\(^{-3}\). The thermal stability of the measuring cell was controlled by a digital thermometer (DT100-20, A. Paar) to better than ±0.01 °C; and the densimeter was calibrated with water (Kratky, Leopold, & Stabinger,) and dry air (Weast, 1974–1975).

The viscosities of aqueous solutions of HCY and its salts were determined with an Ubbelhode capillary viscometer at (25.00 ± 0.01) °C. The absolute viscosity values were calculated by means of the equation (Cannon, Manning, & Bell, 1960):

\[\eta = Cdt - \frac{Ed}{t^2}\]
(1)

where \(\eta\) is the absolute viscosity (i.e., dynamic viscosity) of the solution, \(t\) is the flow time, and \(C\) and \(E\) are constants characteristic of the viscometer. The viscometer constants \(C\) and \(E\) were determined by a least-squares fit to Eq. (1) of the literature data for the absolute viscosity, \(\eta_0\), and the density of water, \(d_0\) (Riddick, Buenger, & Sakano, 1986), at the respective temperature (i.e., from 20.0 to 45.0 °C in 5 °C steps). The temperature of the water bath was maintained to ±0.01 °C and controlled using a precision thermometer (CKT 100, A. Paar). The flow time of the investigated solutions was between 219 and 330 s, and was measured with an accuracy better than 0.1 s. For each solution, the flow time was measured at least ten times. The maximal error of the measured viscosity, \(\Delta\eta\), was 2 \(\times\) 10\(^{-6}\) Pa s.

3. Results and discussion

The viscosity data of the systems investigated are presented in Table 1 as a function of concentration, \(c\) (mol dm\(^{-3}\)), at 25.0 °C. Besides the dynamic viscosity \(\eta\), the values of kinematic viscosity, \(v(\eta = d)\), relative viscosity, \(\eta_r(\eta = \eta/\eta_0)\), specific viscosity, \(\eta_{sp}(\eta_{sp} = (\eta - \eta_0)/\eta_0)\), as well as of reduced viscosity, \(\eta_{red}(\eta_{red} = \eta_{sp}/c)\) are presented. It can be seen from Table 1 and from Fig. 1 that the viscosity, \(\eta\), of the investigated solutions depends on the solute and increases in a non-linear manner with concentration.

The effect of the electrolyte on the flow process of the solution can be explained in terms of Jones–Dole coefficients (1929)

\[\eta = 1 + A_\eta c^{1/2} + B_\eta c + D_\eta c^{3/2} + \cdots\]
(2)

where \(A_\eta\) depends on long-range Coulombic forces, \(B_\eta\) is the viscosity coefficient which is closely related to the ion–solute interaction (i.e., a function of the size and hydration of the solute) and \(D_\eta\) is a constant which depends on higher terms of the long-range Coulombic forces, on higher terms of the hydrodynamic effect, and on structural solute–solute interactions. As such, the parameter \(D_\eta\) is more complex and it cannot be used unambiguously to obtain information on solute–solute or solute–solute interactions (Desnoyes & Perron, 1972).

The interaction parameter, \(A_\eta\), was obtained on the basis of Eq. (2), i.e., from plots of \((\eta - 1)/c^{1/2}\) vs. \(c^{1/2}\). To obtain a linear relationship (giving the viscosity coefficient \(A_\eta\) at the intercept to the ordinate) only lower concentration ranges were taken into account, i.e., up to 0.50 mol dm\(^{-3}\) for HCY, 0.45 mol dm\(^{-3}\) for LiCy and NaCy, and up to 0.18 mol dm\(^{-3}\) for KCy. As a weighting factor, in the procedure of weighted fitting by linear regression, the reciprocal value of the squared term error, i.e., \(1/[c(\eta - 1)/c^{1/2}]^2\), was applied. The \(A_\eta\) coefficients are small and have large standard errors (Table 2), indicating a small ion–ion interaction term, \(A_\eta c^{1/2}\) in Eq. (2). However, the viscosity coefficient \(A_\eta\) was also calculated from the mobility data and solvent properties, on the basis of the Debye–Hückel theory (Crudden, Delaney, Feakins, O’Reilly, & Waghorne, 1982) as

\[A_\eta = \frac{0.2577 \lambda^0}{\eta_0 (\varepsilon_0 T)^{1/2} \lambda^0 \lambda^0} \left[1 - 0.6863 \left(\frac{\lambda_r^0 - \lambda_r^0}{\lambda_r^0}\right)^2\right]\]
(3)

where \(\varepsilon_0\) is the dielectric constant of the solvent (Riddick et al., 1986), \(\lambda^0\) is the limiting molar electrolytic conductance of the electrolyte, being an additive property of the respective ionic components, i.e., the limiting molar conductances of cation, \(\lambda_r^0\) (Robinson & Stokes, 2002) and anion, \(\lambda_r^0\); for the cyclohexylsulfamic anion, the value \(\lambda_r^0 = 27.55\) S cm\(^2\) mol\(^{-1}\) was used (Luci, 2001). The calculated values of the constant \(A_\eta\) (Eq. (3)) are summarized in Table 2.

The viscosity coefficients \(B_\eta\) and \(D_\eta\) were determined by a least-squares analysis of Eq. (2) in the form (Out & Los, 1980):

\[\frac{(\eta_r - 1 - A_\eta c^{1/2})}{c} = B_\eta + D_\eta c^{1/2}\]
(4)

where for coefficients \(A_\eta\), the values calculated via relation (3) were used. As an example, Fig. 2 shows the curve of \((\eta - 1 - A_\eta c^{1/2})/c\) vs. \(c^{1/2}\) for sodium cyclohexylsulfamate. \(B_\eta\) and \(D_\eta\) values obtained are also given in Table 2. The relevance of the calculated viscosity parameters was tested by recalculating, by means of their known values, the value of \(\eta\) at each concentration.
and comparing it with the experimental one; the differences were less than 0.0029.

For cyclohexylsulfamic acid, which is not completely dissociated into free ions, the limiting ionic molar coefficients were obtained from the relation (Davies & Malpass, 1964)

\[
g_r(C_0 - 1) + \frac{B_i}{C_0} + \frac{B_{ip}}{C_0} = \frac{B_i}{C_0} + \frac{B_{ip}}{C_0} (1 - \alpha) c
\]

where \(\alpha \) is the degree of dissociation of the electrolyte, \(B_i \) is the sum of the corresponding ionic coefficients \(B_+ \) and \(B_- \), and \(B_{ip} \) is the coefficient of the ionic pair and

\[I = \frac{1}{2} \sum z^2 c^2,\]

where \(z \) is the charge-number of the ion.

In Eq. (5) the function \(F(I) \) is given as

\[F(I) = \sqrt{\frac{I^{1/2}}{1 + I^{1/2}} - 0.2I}\]
where \(I \) represents the ionic strength of the electrolyte solution. For \(\text{HCy} \), whose dissociation constant is known at \(25.0^\circ \text{C} \) \((K_c = 0.01538 \pm 0.0045, \text{Klofutar, Luci, \& Abramović, 1999})\), \(\alpha \) was calculated, and the left-hand side of Eq. (5) divided by \(c \) was plotted against \(\alpha \) for a series of concentrations (up to \(I \approx 0.1 \text{ mol dm}^{-3} \)); for \(A_g \) the theoretically calculated value was used (Table 2). From the satisfactory straight line, the following values of the viscosity coefficients in Eq. (5) were found: \(B_i = (0.343 \pm 0.017) \text{ dm}^3 \text{ mol}^{-1} \) and \(B_{ip} = (0.650 \pm 0.041) \text{ dm}^3 \text{ mol}^{-1} \). Recalculating \(\eta_i \) via Eq. (5) gives the average difference between the experimental and calculated value of the relative viscosity as \(\pm 0.001 \).

The viscosity coefficient \(B_\eta \) is usually suggested to be a measure of the higher terms of the long-range Coulombic forces, hydrodynamic or size and shape effects, solvation effects and structural effects, and can be interpreted as consisting of two terms (Stokes \& Mills, 1965)

\[
B_\eta = B_{\text{size}} + B_{\text{solv}}
\]

(7)

where \(B_{\text{size}} \) is the effect of the solute and \(B_{\text{solv}} \) is the contribution arising from solute-solvent interactions. Thus \(B_{\text{solv}} \)

\[
B_{\text{solv}} = B_\eta - 0.0025\bar{V}_2^0
\]

(8)

because, in the ideal case, the coefficient \(B_\eta \) is a linear function of the solute partial molar volume, \(\bar{V}_2^0 \) with a slope equal to 0.0025, i.e., the Einstein slope (Desnoyers \& Perron, 1972). Such a plot is shown in Fig. 3 for the alkali cyclohexylsulfamates and some other sweeteners in water at \(25.0^\circ \text{C} \); as expected, the Einstein relation is not obeyed. A positive value of \(B_{\text{solv}} \) (Table 3) would correspond to an overall structure-making effect of the solutes investigated. With the salts of strongly hydrated and strongly electrostrictive ions such as \(\text{Li}^+ \) and \(\text{Na}^+ \), the Coulombic-type hydration has opposite effects on \(B_\eta \) and \(\bar{V}_2^0 \), and charge-dipole interactions decrease \(\bar{V}_2^0 \) (electrostriction) but increase the effective size of the moving ion. For the potassium salt, \(B_{\text{solv}} \) is close to zero (i.e., neither a “structure-maker” nor a “structure-breaker” but it can be classified as an intermediate type of solute) and because it has the smallest ratio, \(B_{\text{size}}/B_\eta \), KCy seems to exert less influence on water structure than the other alkali salts or sugars. In general, sugars show similar values for the relative proportions of \(B_{\text{size}} \) and \(B_{\text{solv}} \) in the overall hydrodynamic molar volume, \(B_\eta \) (about 2/3 and about 1/3, respectively, Mathlouthi et al., 1993) and larger differences between artificial sweeteners are observed.

The viscosity coefficient \(B_\eta \) of electrolytes is an approximately additive property of the respective ionic components

\begin{table}[h]
\centering
\caption{Values of the constants in Eq. (2)}
\begin{tabular}{|c|c|c|c|c|}
\hline
Solute & \(A_{\text{eh}} \) (mol dm\(^{-3}\))\(^{-1/2} \) & \(A_{\text{coh}} \) (mol dm\(^{-3}\))\(^{-1/2} \) & \(R_\eta \) (dm\(^3\) mol\(^{-1}\)) & \(D_\eta \) (mol dm\(^{-3}\))\(^{-1/2} \) \\
\hline
\text{LiCy} & 0.011559 & 0.006 \pm 0.015 & 0.486 \pm 0.014 & 0.256 \pm 0.028 \\
\text{NaCy} & 0.010059 & 0.009 \pm 0.012 & 0.427 \pm 0.013 & 0.376 \pm 0.022 \\
\text{KCy} & 0.008112 & 0.002 \pm 0.013 & 0.338 \pm 0.013 & 0.186 \pm 0.034 \\
\text{HCy} & 0.003705 & 0.005 \pm 0.008 & & \\
\hline
\end{tabular}
\end{table}
 viscosity flow of an electrolyte solute at infinite dilution, ΔG_{1}^{0} is given by (Feakins, Wagborne, & Lawrence, 1986):

$$B_\eta = \left(\frac{V_1^0 - V_2^0}{1000}\right) + \left(\frac{V_1^0}{1000}\right)\left(\frac{\Delta G_{1}^{0} - \Delta G_{2}^{0}}{RT}\right) \quad (10)$$

where ΔG_{1}^{0} is the Gibbs energy of activation per mole for the pure solvent, R is the gas constant, T is the absolute temperature and $V_1^0 = V_2^0$ is the partial molar volume of the solvent as $c \to 0$. It is interesting that the first term in Eq. (10) for aqueous solutions of alkali cyclohexylsulfamates is a negative contribution to the viscosity coefficient B_η and it reduces the value of B_η from 22% to 34% along the series of alkali salts (Table 5). The second term is uniformly positive since $\Delta G_{1}^{0} > \Delta G_{2}^{0}$, where for ΔG_{1}^{0} a value of 9163.85 J mol$^{-1}$ was used (Feakins, Freemantle, & Lawrence, 1974); this phenomenon suggests that ion–solvent bonds are stronger than solvent–solvent bonds in the transition state and tend to decrease from Li$^+$ to K$^+$. Moreover, in the same series, ΔG_{2}^{0}, like B_η, was found to decrease linearly with increase in the molecular weight of the cation.

Information on the hydration of solutes can be obtained by a procedure given by Linow and Philipp (1984). The hydration number, n_h, i.e., the number of moles of bonded water molecules in the inner hydration sphere per mole of solute, was evaluated from the change of solution viscosity with solute concentration:

$$\frac{\eta_{sp}}{c} = 2.5\eta_{ns} + \eta_{ns}\eta_{sp} \quad (11)$$

Table 3

<table>
<thead>
<tr>
<th>Solute</th>
<th>V_2^0 (cm3 mol$^{-1}$)</th>
<th>B_η (dm3 mol$^{-1}$)</th>
<th>B_{obs} (dm3 mol$^{-1}$)</th>
<th>$\frac{n_h}{c}$</th>
<th>$\frac{\eta_{sp}}{c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCy</td>
<td>127.52</td>
<td>0.486</td>
<td>0.167</td>
<td>0.344</td>
<td>0.656</td>
</tr>
<tr>
<td>NaCy</td>
<td>122.81</td>
<td>0.427</td>
<td>0.120</td>
<td>0.281</td>
<td>0.719</td>
</tr>
<tr>
<td>KCy</td>
<td>133.50</td>
<td>0.338</td>
<td>0.004</td>
<td>0.093</td>
<td>0.987</td>
</tr>
<tr>
<td>Aspartameb</td>
<td>218.67</td>
<td>0.861</td>
<td>0.315</td>
<td>0.365</td>
<td>0.634</td>
</tr>
<tr>
<td>Saccharin-Nab</td>
<td>118.19</td>
<td>0.335</td>
<td>0.040</td>
<td>0.119</td>
<td>0.880</td>
</tr>
<tr>
<td>Glucoseb</td>
<td>112.80</td>
<td>0.429</td>
<td>0.148</td>
<td>0.345</td>
<td>0.655</td>
</tr>
<tr>
<td>Fructoseb</td>
<td>110.80</td>
<td>0.410</td>
<td>0.133</td>
<td>0.324</td>
<td>0.675</td>
</tr>
<tr>
<td>Sucroseb</td>
<td>212.56</td>
<td>0.823</td>
<td>0.292</td>
<td>0.354</td>
<td>0.645</td>
</tr>
</tbody>
</table>

a Rudan-Tasic and Klofutar (2004).
b Mathlouthi et al. (1993), Tables 2 and 3.

Table 4

<table>
<thead>
<tr>
<th>Solute</th>
<th>B_η (dm3 mol$^{-1}$)</th>
<th>B_{ns} (dm3 mol$^{-1}$)</th>
<th>B_{obs} (dm3 mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCy</td>
<td>0.486 ± 0.014</td>
<td>0.149</td>
<td>0.337</td>
</tr>
<tr>
<td>NaCy</td>
<td>0.427 ± 0.013</td>
<td>0.086</td>
<td>0.341</td>
</tr>
<tr>
<td>KCy</td>
<td>0.338 ± 0.013</td>
<td>−0.007</td>
<td>0.345</td>
</tr>
</tbody>
</table>

a Millero (1972).

Thus the partial Gibbs free energy for activation of viscous flow of an electrolyte solute at infinite dilution, ΔG_{1}^{0} is given by (Feakins, Wagborne, & Lawrence, 1986):
where V_η is the volume of hydrated solute and can be obtained as the slope of the plot of $\eta_{\text{red}} / c = \eta_{\text{red}}$ vs. η_{sp}. Then the hydration number is given by

$$n_h = \frac{V_\eta - V_0}{V_0}$$ \hspace{1cm} (12)

As an example, in Fig. 4 the dependence of η_{red} on η_{sp} for the sodium salt of cyclohexylsulfamic acid is given, from which it can be seen that Eq. (11) satisfactorily represents the experimental results. The calculated values of hydration numbers for the investigated alkali salts are given in Table 6.

The hydration of the cyclohexylsulphamate ion was deduced from Einstein’s equation (Dasgupta, Das, & Hazra, 1989)

$$B_\pm = 2.5 \frac{4\pi R_i^3 N}{3 \times 1000}$$ \hspace{1cm} (13)

$$\eta_{\text{red}} = \frac{\eta_{\text{sp}}}{c}$$

where R_i is the radius of the ion, assumed to be a rigid sphere moving in a continuum and 2.5 is the shape factor for a sphere. The number of water molecules bound to the ion in the primary sphere of hydration, $n_{\pm(h)}$, can be calculated from (Feakins & Lawrence, 1966):

$$B_\pm = \frac{2.5}{1000} \left(V_i + n_{\pm(h)} V_0 \right)$$ \hspace{1cm} (14)

where the bare ion molar volume, V_i, is related to the crystallographic radius of the ion. For the cyclohexylsulfamate ion with a value of $V_{Cy^{-}} = 127.65$ cm3 mol$^{-1}$, the hydration number $n_{Cy^{-}}(b)$ determined on the basis of Eq. (14) was found to be 0.48 which is very close to the value obtained on the basis of volumetric measurements (i.e., 0.54, Rudan-Tasic & Klofutar, 2004).

There is no clear relationship observed between the transport and volumetric properties of the systems studied. The results shown in Table 3 suggest that the viscosity coefficient B_η accounts for the hydrodynamic solvation of the solutes, whereas the apparent molar volume reflects the static arrangement of the solute molecule within the structure of water. Therefore, a comparison of the two volumes for the same solute shows a great difference even though both parameters reflect the volume of solvent associated with one mole of the solute. Thus, the value of B_η is about three to four times as high as the apparent molar volume for KCy to LiCy and the same is true for each of the sugars presented in Table 3.

There is also no direct relation found between the transport properties of the alkali cyclohexylsulfamates and the published sweetness values. However, data on the relative sweetness, RS, are not available and are known only for the sodium and potassium salts (39.8 and 40.2, respectively, Spillane et al., 1996). So, we may speak only of a trend, i.e., an increase in the relative sweetness in the order of decreasing value of the thermodynamic parameter of activation for viscous flow,

Table 5

<table>
<thead>
<tr>
<th>Solute</th>
<th>ΔV_{1000} (dm3 mol$^{-1}$)</th>
<th>ΔV_{0} (dm3 mol$^{-1}$)</th>
<th>$\Delta G^0_2 - \Delta G^0_1$ (J mol$^{-1}$)</th>
<th>ΔG^0_2 (J mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCy</td>
<td>0.115</td>
<td>0.453</td>
<td>62,210</td>
<td>71,374</td>
</tr>
<tr>
<td>NaCy</td>
<td>0.109</td>
<td>0.532</td>
<td>72,954</td>
<td>82,118</td>
</tr>
<tr>
<td>KCy</td>
<td>0.105</td>
<td>0.595</td>
<td>81,695</td>
<td>90,859</td>
</tr>
</tbody>
</table>

ΔV_{1000} is the volume of hydrated solute and can be obtained as the slope of the plot of $\eta_{\text{red}} / c = \eta_{\text{red}}$ vs. η_{sp}. The calculated values of hydration numbers for the investigated alkali salts are given in Table 6.

Table 6

<table>
<thead>
<tr>
<th>Solute</th>
<th>V_η (dm3 mol$^{-1}$)</th>
<th>n_h</th>
<th>η^0_0 (S cm2 mol$^{-1}$)</th>
<th>$-\Delta G^0_{1(h)}$ (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCy</td>
<td>0.338 ± 0.025</td>
<td>12</td>
<td>38.68</td>
<td>479</td>
</tr>
<tr>
<td>NaCy</td>
<td>0.292 ± 0.031</td>
<td>9</td>
<td>50.10</td>
<td>375</td>
</tr>
<tr>
<td>KCy</td>
<td>0.209 ± 0.066</td>
<td>4</td>
<td>73.50</td>
<td>307</td>
</tr>
</tbody>
</table>

ΔV_{1000} is the volume of hydrated solute and can be obtained as the slope of the plot of $\eta_{\text{red}} / c = \eta_{\text{red}}$ vs. η_{sp}. The calculated values of hydration numbers for the investigated alkali salts are given in Table 6.
Na$_2$O (Table 5). Namely, weaker solute-solvent interactions (i.e., lower ΔG_2^{int}) mean higher mobility of water molecules around the sweetener molecule, which seems to be essential in increasing the sweetness. Similarly, the relatively high sweetness of D-fructose (RS = 1.2, $\Delta G_2^{\text{int}} = 79.2$ kJ mol$^{-1}$) compared to other natural sugars, e.g., D-glucose (RS = 0.7, $\Delta G_2^{\text{int}} = 79.5$ kJ mol$^{-1}$) or D-galactose (RS = 0.4, $\Delta G_2^{\text{int}} = 84.4$ kJ mol$^{-1}$) may be due to the higher mobility of water around it; the relative sweetness data were taken from Mathlouthi and Suve (1988) and the ΔG_2^{int} values from Klofutar, Paljk, and Kac (1989). When water mobility is increased in the region of sweet receptors in the taste epithelium, the Na$^+$/K$^+$ transport across the membrane of the taste cells is supposed to be facilitated, leading to a high value of the membrane potential and this could enhance the intensity of the sweetness (Mathlouthi, 1984). In fact, alkalai cyclohexylsulfamates belong to the ionic type of sweeteners with a light bitter aftertaste (Rudan-Tasic & Klofutar, 2004), confirming that sweetness may, therefore, be thought of as a sensation involving a complicated interplay of structural and solution properties, i.e., a variety of interactions in solutions of sweeteners. An understanding of this interplay may lead to a better understanding of sweet taste chemoreception.

References

