ZBIRKA NALOG IN VPRAŠANJ IZ KEMIJE
za študijske smeri Biotehnologije, Mikrobiologije ter Živilstva in prehrane

Iztok Prislan
Biotehniška fakulteta
Predgovor

Želim vam veliko uspeha pri reševanju nalog.

Iztok Prislan

Ljubljana, oktober 2019
<table>
<thead>
<tr>
<th>Kazalo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Izvor elementov</td>
<td>1</td>
</tr>
<tr>
<td>Toplota, delo, energija</td>
<td>2</td>
</tr>
<tr>
<td>Snov in agregatna stanja</td>
<td>4</td>
</tr>
<tr>
<td>Plinski zakoni in enačbe</td>
<td>7</td>
</tr>
<tr>
<td>Struktura atoma in kemijska vez</td>
<td>10</td>
</tr>
<tr>
<td>Raztopine</td>
<td>14</td>
</tr>
<tr>
<td>Kemijsko ravnotežje</td>
<td>16</td>
</tr>
<tr>
<td>Kisline, baze in redoks reakcije</td>
<td>20</td>
</tr>
<tr>
<td>Kemijska termodynamika</td>
<td>25</td>
</tr>
<tr>
<td>Adsorpcija</td>
<td>30</td>
</tr>
<tr>
<td>Elektrokemija</td>
<td>32</td>
</tr>
<tr>
<td>Kemijska kinetika</td>
<td>33</td>
</tr>
<tr>
<td>Organska kemija</td>
<td>37</td>
</tr>
<tr>
<td>Viri in literatura</td>
<td>49</td>
</tr>
</tbody>
</table>
Izvor elementov

1. S pomočjo enačbe za energijo fotona razloži, kakšna je energija UV svetlobe v primerjavi z energijo vidne svetlobe.

3. Kako so nastali elementi, ki so težji od vodiča?

5. Razloži, zakaj je na Zemlji manj zlata kot silicija.

Toplota, delo, energija

7. V 500 ml čaja s temperaturo 20,0 °C potopimo kocko ledu z maso 50,0 g. Izračunaj temperaturo čaja, ko se kocka stali. Prizvemi, da je šalica s čajem izolirana od okolice. Gostota vode (in ledenega čaja) je 1,00 g/mL in se v temperaturnem območju od 0°C do 20°C ne spreminja. Toplotni kapaciteti vode in ledu znašata 4,184 J g⁻¹°C⁻¹ in 2,062 J g⁻¹°C⁻¹, talilna entalpija ledu pa znaša 6,01 kJ/mol. REŠITEV: T (čaja) = 10,9 °C

8. 20 g neznane kovine s temperaturo 90 °C potopimo v 100 ml vode s temperaturo 25 °C. Končna temperatura sistema je 26,1 °C. Oceni specifično toplotno kapaciteto kovine. Za gostoto vode uporabi vrednost 1,00 g/cm³. REŠITEV: c = 0,36 J g⁻¹ °C⁻¹

9. Pri gorenju 1 mola propana se sprosti 2200 kJ energije. Izračunaj maso propana, ki jo moramo imeti v gorilniku, če želimo segreti 400 g snega s \(T = -5 \) °C na \(T = 37 \) °C. Zapiši in uredi kemijsko reakcijo za gorenje propana in upoštevaj, da je toplotna kapaciteta vode 4,184 J g⁻¹ K⁻¹, toplotna kapaciteta ledu 2,062 J g⁻¹ K⁻¹, talilna entalpija ledu pa 6,01 kJ/mol. REŠITEV: m = 4 g

10. Izolirano posodo napolnimo z 76,13 g vode. Ko v vodi raztopimo 1,10 g NH₄NO₃, temperatura vode pade iz začetnih 25,00 °C na 23,93 °C. Če privzameš, da znaša toplotna kapaciteta končne raztopine 4,18 J/°C, izračunaj topilno entalpijo NH₄NO₃ v kJ/mol. REŠITEV: \(\Delta_{\text{top}}H = 25,1 \) kJ mol⁻¹

11. Koliko dela opravi sistem na okolico, ko se volumen poveča iz 13,27 l na 76,55 l, zunanjii tlak pa znaša 14,89 atm? REŠITEV: \(w = -95450 \) J

12. Kakšna je sprememba energije sistema, če se tekom kemijske reakcije prenese na okolico 32,146 kJ toplote, hkrati pa se volumen sistema spremeni iz 1,465 l na 3,687 l? Zunanjii tlak znaša 3,64 atm. REŠITEV: \(\Delta E = -32,965 \) kJ

13. 21,8 g etanola izgori v kalorimetru po reakciji:
\[
\text{C}_2\text{H}_5\text{OH} (l) + 3 \text{ O}_2 (g) \rightarrow 2 \text{ CO}_2 (g) + 3 \text{ H}_2\text{O} (g)
\]
\(\Delta_{\text{reak}}H = -1235 \) kJ/mol
Temperatura se zviša iz 25,0 °C na 62,3 °C. Izračunaj topotno kapaciteto kalorimetra. REŠITEV: \(C_{\text{cal}} = 15,7 \) kJ/°C

14. 100 ml 0,3 M raztopine NaOH zmešamo z 100 ml 0,31 M raztopine HNO₃. Temperatura obeh raztopin je bila 35 °C, temperatura mešanice pa znaša 37 °C. Izračunaj \(\Delta_{\text{reak}}H^0 \) (v kJ / mol). Predpostavi, da eksperiment izvajaš v adiabatni posodi ter da so topotne kapacitete obeh raztopin in končne mešanice enake topotni kapaciteti vode (\(c_p (\text{H}_2\text{O}) = 4,184 \) J g⁻¹ °C⁻¹). REŠITEV: \(\Delta_{\text{reak}}H^0 = -56 \) kJ / mol
15. V prvo čašo nalijemo 100,0 ml raztopine AgNO₃ s koncentracijo 0,100 M. V drugo čašo nalijemo 100,0 ml raztopine NaCl s koncentracijo 0,200 M. Počakamo, da se obe raztopini segrejeta na sobno temperaturo \(T = 22,00 \, ^{\circ}C \). Nato v prvo čašo nalijemo vsebino druge čaše in izmerimo temperaturo reakcijske mešanice \(T = 22,65 \, ^{\circ}C \). Upoštevaj, da se tekom reakcije v okolico izgubi 50 J in izračunaj reakcijsko entalpijo za reakcijo:

\[
\text{NaCl}_{(aq)} + \text{AgNO}_3_{(aq)} \rightarrow \text{AgCl}_{(s)} + \text{NaNO}_3_{(aq)}
\]

Kakšna bo sprememba entropije tekom reakcije? Razloži.

\(c_p (\text{H}_2\text{O}) = 4,184 \, \text{J g}^{-1} \text{K}^{-1} \)

REŠITEV:

16. Kako lahko energijo prenašamo med sistemi?

REŠITEV: Energijo lahko prenašamo kot toploto ali/in delo

17. Katera od našteti količin ni funkcija stanja; tlak, temperatura, notranja energija, entalpija, delo?

REŠITEV: Delo

18. Kako se zaprt sistem razlikuje od odprtega?

REŠITEV: Zaprt sistem ne more izmenjevati snovi z okolico
Snov in agregatna stanja

19. Snov, ki jo sestavljajo atomi ogljika, vodika in kisika sežgemo do ogljikovega dioksida (CO₂) in vode. Če sežgemo 50,0 g snovi, nastane 61,4 g CO₂ in 22,6 g vode. Kakšen masni delež snovi predstavljajo posamezni elementi?

REŠITEV: w (C) = 0,336, w (H) = 0,0506, w (O) = 0,614

20. Glukoza je sestavljena iz 40,0 % ogljika, 6,7 % vodika in 53,3 % kisika. Njena molska masa je 180,16 g/mol. Izračunaj in zapiši molekulsko formulo glukoze.

REŠITEV: C₆H₁₂O₆

21. Uredi spodnjo enačbo:

C + SO₂ ↔ CS₂ + CO

Izračunaj množino nastalega ogljikovega monoksida, če imamo v reakcijski zmesi 50 l žveplovega dioksida in 36,0 g ogljika pri $T = 40 ^\circ C$ in $P = 106$ kPa.

REŠITEV: n (CO) = 2,4 mol

22. Hidrazin (N₂H₄) uporabljamo tudi za odstranjevanje toksičnih kromatov iz onesnaženih vod. Hidrazin reagira s kromati po naslednji enačbi:

$K₂CrO₄ (aq) + N₂H₄ (l) + H₂O (l) \leftrightarrow Cr(OH)₃ (s) + N₂ (g) + KOH (aq)$

Uredi enačbo in izračunaj maso vode, ki jo potrebujemo za popolno reakcijo 15,0 kg hidrazina.

REŠITEV: m (H₂O) = 11,25 kg

23. Količino železa v prsti določamo s pomočjo reakcije, kjer železov(II) nitrat(V) reagira s kalijevim manganatom(VII) in dušikovo(V) kislino. Pri tej reakciji nastane železov(III) nitrat(V), manganov(II) nitrat(V), kalijev nitrat(V) in voda. Zapiši in uredi reakcijo. Zatehtate 13,00 g prsti in izolirate železo v obliki železovega manganata(VII). Določite masni delež železa v analizirani prsti.

REŠITEV: w(Fe) = 0,27

24. 3,25 g železove rude raztopimo v posebnem topilu, tako da dobimo raztopino železovega sulfata(VI). To raztopino titriramo s kalijevim dikromatom (K₂Cr₂O₇). Da dosežemo ekvivalentno točko, potrebujemo 38,5 ml 0,150 M raztopine kalijevga dikromata. Izračunaj delež železa v rudi, če titracija poteka po naslednji (neurejeni!) reakciji:

$FeSO₄(aq) + K₂Cr₂O₇(aq) + H₂SO₄(aq) \rightarrow Fe₂(SO₄)₃(aq) + Cr₂(SO₄)₃(aq) + 7H₂O(l) + K₂SO₄(aq)$

REŠITEV: w(Fe) = 0,59
25. V mednarodni vesoljski postaji poskrbijo za odstranjevanje ogljikovega dioksida iz izdihanega zraka astronautov s pomočjo litijevega hidroksida:

\[2\text{LiOH(s)} + \text{CO}_2(g) \rightarrow \text{Li}_2\text{CO}_3(s) + \text{H}_2\text{O(l)} \]

Izračunaj maso LiOH, ki jo na vesoljski postaji porabijo za enega astronauta na dan. Upoštevaj, da vsak astronaut porabi 10^4 kJ energije, ki jo telo pridobi z metabolizmom glukoze, tekom katerega nastaja ogljikov dioksid in voda.

\[\Delta_{\text{mol}} H (\text{glukoza}) = -1273 \text{ kJ/mol} \]

REŠITEV: \(m(\text{LiOH}) = 2,26 \text{ kg} \)

26. Krom pridobivamo iz kromita (FeCr_2O_4) s pomočjo naslednjih reakcij:

\[
\begin{align*}
\text{FeCr}_2\text{O}_4(s) + \text{K}_2\text{CO}_3(s) + \text{O}_2(g) & \rightarrow \text{Fe}_2\text{O}_3 + \text{K}_2\text{CrO}_4(s) + \text{CO}_2(g) \\
\text{K}_2\text{Cr}_2\text{O}_7(s) + \text{NH}_4\text{Cl(s)} & \rightarrow \text{Cr}_2\text{O}_3(s) + \text{KCl(s)} + \text{N}_2(g) + \text{H}_2\text{O(g)}.
\end{align*}
\]

Uredi enačbe in izračunaj, koliko kromita s čistostjo 80 % potrebuješ za proizvodnjo 1 kg kroma.

REŠITEV: \(m(\text{FeCr}_2\text{O}_4) = 2,7 \text{ kg} \)

27. Alum (KAl(SO_4)_2·12H_2O) pridobivamo iz aluminija s pomočjo naslednjih reakcij:

\[
\begin{align*}
\text{Al(s)} + \text{KOH(aq)} + \text{H}_2\text{O(l)} & \rightarrow \text{KAl(OH)}_4(aq) + \text{H}_2(g) \\
\text{KAl(OH)}_4(aq) + \text{H}_2\text{SO}_4(aq) & \rightarrow \text{Al(OH)}_3(s) + \text{K}_2\text{SO}_4(aq) + \text{H}_2\text{O(l)} \\
\text{Al(OH)}_3(s) + \text{H}_2\text{SO}_4(aq) & \rightarrow \text{Al}_2(\text{SO}_4)_3(aq) + \text{H}_2\text{O(l)} \\
\text{K}_2\text{SO}_4(aq) + \text{Al}_2(\text{SO}_4)_3(aq) + \text{H}_2\text{O(l)} & \rightarrow \text{KAl(SO}_4)_2·12\text{H}_2\text{O(s)}
\end{align*}
\]

Uredi enačbe in izračunaj, koliko alumina s čistostjo 80 % potrebuješ za proizvodnjo 1 kg alumina.

REŠITEV: \(m(\text{Al}) = 71 \text{ g} \)

28. Kos železa reagira s kisikom iz zraka, pri čemer nastaja železo v (III) oksid oz. rja. Enačba za reakcijo se glasi:

\[4 \text{Fe(s)} + 3 \text{O}_2(g) \leftrightarrow 2 \text{Fe}_2\text{O}_3(s). \]

a) Primerjaj maso železa na začetku in rje na koncu ter razloži zakaj se masi razlikujeta.

b) Ali je tvoj odgovor na vprašanje a v popolnem sozvočju z zakonom o ohranitvi mase? Razloži.

29. Imaš 107 g tekočine z gostoto 13,6 g/ml.

a) Izračunaj volumen. Pri računanju ne pozabi na enote!

30. Natrij je mehka kovina, srebrnkaste barve, klor pa je plin zelene barve. Če izpostavimo natrij kloru, nastane trden natrijev klorid, NaCl.
 b) Kakšna je kemijska formula za klor?
 c) Napiši kemijsko reakcijo za omenjen proces!
 d) Kaj predstavlja stran z reaktanti v kemijski reakciji iz točke c (mešanico ali element)? Na kratko razloži.

32. Skiciraj ohlajevalno krivuljo spojine, ki ima temperaturo vrelišča pri 77 °C in temperaturo tališča pri 34 °C, če jo ohlajamo od 100 °C na 0 °C.

33. V epruveti zatehtamo enaki masi dveh različnih spojin (A in B) v trdnem agregatnem stanju in epruveti zatesnimo. Tlak v epruvetah je enak zunanjemu zračnemu tlaku (1 atm). Epruveti za 10 ur segrejemo na 50 °C. Po ohladitvi na sobno temperaturo je tlak v epruveti s spojino A enak 1,5 atm, tlak v epruveti s spojino B pa 0,87 atm. Razloži spremembi v tlaku. Ali sta masi spojine A in B po eksperimentu še vedno enaki?

34. Spojino C pripravimo tako, da zmešamo 25 ml 0,5 M raztopine spojine A in 75 ml 1,05 M raztopine B, mešanico segrejemo na 60 °C in jo 1 uro pustimo na omenjeni temperaturi. Laboratorijski tehnik je želel prihraniti nekaj časa in je raztopini spoj in B predhodno segrel na 60 °C ter nato zmešal 25 ml segrete raztopine A in 75 ml segrete raztopine B. Po 1 uri je presenečen ugotovil, da je dobil manj spojine C kot v primeru, ko je uporabljal običajen postopek. Razloži, zakaj je laboratorijski tehnik v spremenjenem postopku sintetiziral manj spojine C.

35. Nariši Maxwell-Boltzmanovo porazdelitev molekul nekega plina po hitrosti pri dveh različnih temperaturah. Razloži, zakaj se po deževju ceste posušijo, kljub temu da temperatura ne doseže 100 °C.

Plinski zakoni in enačbe

37. Koliko ml kisika pri 0 °C in 1,00 atm bi potrebovali za popoln sežig 5,00 g tekočega metanola (CH₃OH)? Reakcija se glasi:

\[2 \text{CH}_3\text{OH} + 3 \text{O}_2 \rightarrow 2 \text{CO}_2 + 4 \text{H}_2\text{O} \]

REŠITEV: \(V (\text{O}_2) = 5,25 \times 10^3 \text{ ml} \)

38. V 0,5 M raztopino HCl potopimo 0,1 mola Mg. Koliko litrov vodika se sprosti pri reakciji, če le ta poteče do konca pri standardnih pogojih (25°C in 1 atm)?

\[\text{Mg (s)} + 2\text{HCl (aq)} \rightarrow \text{MgCl}_2 (\text{aq}) + \text{H}_2 (\text{g}) \]

REŠITEV: \(V (\text{H}_2) = 2,45 \text{ l} \)

39. Odrasel človek v povprečju vdihne 20 krat na minuto. Če vsakič vdihne 310 ml zraka pri 20°C in 0,997 atm, koliko molov zraka vdihne v enem dnev? Kakšna je povprečna molska masa zraka, če je gostota zraka 1.19 kg/m³?

REŠITEV: \(n = 367 \text{ mol}, \ M_{\text{pov}} = 29,0 \text{ g mol}^{-1} \)

40. Jacques Charles in Nicolas Robert sta 1. decembra 1783 vzletela s prvim plinskim balonom, ki je bil napolnjen z vodikom. Volumen balona je znašal 2,72 \times 10^4 l, v času poleta pa je bila temperatura zraka -10 °C, tlak pa 745 mm Hg.

a) Izračunaj število molekul vodika, ki jih je moral vsebovati balon, da je lahko poletel.

b) Recimo, da bi pilota poletela 1. avgusta, ko bi temperatura bila +30 °C in tlak 745 mm Hg. Izračunaj kakšen bi bil volumen balona, če bi vseboval enako število molekul vodika kot v prejšnjem primeru.

c) Izračunaj gostoto vodika 1. decembra (T = -10 °C, p = 745 mm Hg) in 1. avgusta (T = 30 °C, p = 745 mm Hg).

REŠITEV: a) \(N (\text{H}_2) = 7,44 \times 10^{26} \text{ molekul} \), b) \(V = 3,13 \times 10^4 \text{ l} \), c) \(\rho (1.12.) = 0,0908 \text{ g dm}^{-3} \), \(\rho (1.8.) = 0,0788 \text{ g dm}^{-3} \)

41. Pri temperaturi 19 °C uvedemo v 20 l posodo mešanico plinov, sestavljeno iz 5,0 g kisika (O₂) in 5,0 g žveplovega dioksida (SO₂).

a) Izračunaj parcialni tlak posameznih plinov in celokupni tlak.

b) Ves žveplov dioksid zreagira s kisikom in nastane žveplov trioksid (SO₃). Zapiši reakcijo in izračunaj, kakšen mora biti končen volumen posode, da je tlak novonastale plinske mešanice enak tlaku pred reakcijo.

REŠITEV: a) \(p_1 = 18,97 \text{ kPa} \), \(p_2 = 9,48 \text{ kPa} \), \(p = p_1 + p_2 = 28,5 \text{ kPa} \); b) \(V = 16,6 \text{ l} \)

42. V razpršilniku z volumnom 0,406 l ostane še 0,025 molov plina, ki na stene razpršilnika delujejo s tlakom 1,5 atm. Razpršilnik navkljub opozorilom vržete v ogenj s temperaturo 750 °C. Kovinska embalaža razpršilnika zdrži tlak do 4 atm. Izračunaj, ali bo razpršilnik v ognju razneslo.

REŠITEV: \(p = 5,17 \text{ atm} – \text{razpršilnik bo razneslo} \)
43. 276,58 g neznane snovi z molekulsko formulo X_2 zaprete v posodo z volumnom 30,0 l. Ko izmerite pogoje v posodi, manometer pokaže 3,2 atmosfere, termometer pa 27 °C. Ugotovi, kateri element predstavlja X.
REŠITEV: X predstavlja Cl (klor)

44. Toluen je ena izmed komponent bencina, katerega glavna sestavina je oktan. S pomočjo spodnjih podatkov izračunaj parni tlak mešanice, ki vsebuje 20 % toluena in 80 % oktana (w/w).

<table>
<thead>
<tr>
<th>Spojina</th>
<th>$p^0 (T = 20 °C)$ / mm Hg</th>
<th>$T_{vrep/o}$ / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktan</td>
<td>10,5</td>
<td>126</td>
</tr>
<tr>
<td>Toluen</td>
<td>22,0</td>
<td>111</td>
</tr>
</tbody>
</table>

REŠITEV: $p = 13,2$ mm Hg

45. Izdelati morate posodo za stisnjen plin, ki bo imela volumen 4,0 l in bo vsebovala 500 g klora. Vaša tehnologija dovoli izdelavo posode, ki prenese tlak do 40 atm. S pomočjo splošne plinske in van der Waalsove enačbe izračunaj, ali bi izdelana posoda lahko vsebovala želeno količino plina. Pojasni morebitno razliko v doblih rezultatih in se odloči (razloži), kateremu rezultati bi bolj zaupal. ($a = 657,9 \, \text{l}^2 \, \text{kPa} \, \text{mol}^{-2}, b = 0,05622 \, \text{l} \, \text{mol}^{-1}$)
REŠITEV: Po splošni plinski enačbi bi jeklenko morali hraniti $p \leq 4 \, \text{°C}$, po van der Waalsovi enačbi pa jeklenka zdržala do 101 °C.

46. Klorov dioksid uporabljamo kot industrijsko belilo in razkužilo. Z vodo reagira po naslednji enačbi:

$$\text{ClO}_2 (g) + \text{H}_2\text{O} (l) \rightarrow \text{HClO}_3 (l) + \text{HCl} (g)$$

135 g ClO$_2$ zmešamo s 36 g H$_2$O. Uredi enačbo in izračunaj volumen nastalega vodikovega klorida, če je temperatura 25 °C, tlak pa znaša 1 atm.
REŠITEV: $V (\text{HCl}) = 8,15$ l

47. Mešanica plinov je sestavljena iz neona, argona in kriptona. Celokupni tlak mešanice znaša 2,80 atm, parcialni tlak argona pa znaša 0,70 atm. Izračunaj množino argona v mešanici, če je celokupna množina plinov enaka 20,0 molov.
REŠITEV: $n(\text{Ar}) = 5,0$ mol

48. Suhi led (ogljikov dioksid v trdnem agregatnem stanju) se pogosto uporablja za ustvarjanje posebnih učinkov na koncertih. Izračunaj volumen ogljikovega dioksida, ki sublimira iz 7,48 g suhega ledu pri tlaku 765 mm Hg in pri temperaturi 32 °C. S pomočjo faznega diagrama razloži, zakaj voda za razliko od ogljikovega dioksida pri tlaku 765 mm Hg ne sublimira.
REŠITEV: $V(\text{CO}_2) = 4,28$ l

49. Izračunaj gostoto naravnega plina pri temperaturi 20 °C in tlaku 0,98 $\times 10^5$ Pa. Sestava naravnega plina je naslednja: w (metan) = 0,85; w (etan) = 0,15.
(NAMIG: Izračunaj povprečno molsko maso)
REŠITEV: $\rho = 0,692$ g l$^{-1}$
50. Kakšna je razlika med realnim in idealnim plinom? Zapiši van der Waalsovo enačbo in jo pojasni.

52. S pomočjo splošne plinske enačbe nariši grafe odvisnosti tlaka od inverzne vrednosti volumena pri treh različnih temperaturah. Označi, katera temperatura je najvišja in katera najnižja.

53. Pred odhodom na smučanje v visokogorju se ustavite v lokalni trgovini in kupite paket jogurtov, ki so prikazani na desni sliki. Po napornem smučanju si pred kočo na smučišču privoščite malico in opazite, da so po krovi jogurtov zelo nabreknjeni. Čudite se, ker tega niste opazili že v trgovini, in ravno ko želite zavreči »pokvarjene« jogurte, do vas prihiti oskrbnik koče, ki v prostem času rad prebira kemijske učbenike. S pomočjo splošne plinske enačbe vam razloži, da z jogurti ni nič narobe. Kako se je glasila njegova razlaga?

54. Katere trditve so pravilne? Svojo odločitev pojasni!
 a) Ko plin stisnemo se množina plina zmanjša.
 b) Vsi idealni plini imajo enako gostoto pri istih pogojih.
 c) Dušik difundira skozi porozno membrano pri isti temperaturi hitreje kot kisik.
 d) Za vse pline velja, da so pri istih pogojih v enakih prostorninah plinov enake množine plinov.
 e) V enem gramu vodika je enako število molekul, kot je atomov v 4g helija.
 f) Totalni tlak plinske zmesi plinov X in Y je 364 kPa. Parcijalni tlak plina X je 91 kPa. V posodi je 3-krat večje število molekul plinaY kot molekul plina X.

Struktura atoma in kemijska vez

56. Atom ima elektronsko konfiguracijo 1s²2s²2p⁶3s²3p².
 a) Kateri element ima napisano elektronsko konfiguracijo? Kako to veš?
 b) Koliko valenčnih elektronov ima atom tega elementa?
 c) Kaj so to valenčni elekroni?
 d) Ali obstaja še kakšen element, ki ima istim številom in vrsto valenčnih elektronov?

59. Postavi se v vlogo molekule. Za spodaj opisane situacije ugotovi, v katerem agregatnem stanju se nahajaš?
 a) Pogledaš naokoli in vsakič vidiš iste sosedje, ki so na istem mestu.
 b) Pogledaš naokoli in vsake toliko časa prihiti mimo tebe nov sosed.

60. Kisik v molekuli vode obdajajo štirje elektronski pari, zato ima voda obliko tetraedra.
 a) S pomočjo hibridizacije razloži obliko molekule vode.
 b) Voda ima v resnici obliko popačenega tetraedra, saj je kot med vodikoma meri 104,5 ° in ne 109,5 °. Razloži.
 c) Na dveh primerih razloži, zakaj je voda posebna molekula in kakšen vpliv ima to na življenje na Zemlji.

61. Neznani element ima naslednjo elektronsko konfiguracijo: 1s²2s²2p⁶3s²3p⁵.
 a) Poimenuj neznani element. Kako si ga prepoznal?
 b) Kakšen noboj bo po tvojem mnenju imel ion tega elementa? Svoj odgovor razloži s pomočjo elektronske konfiguracije?
 c) Kaj so to valenčni elektroni? Nariši enerjijski diagram elektronov neznanega elementa.

62. HF je bolj polarna molekula in tvori močnejše vodikove vezi od H₂O. Razloži zakaj ima voda kljub temu višje vrelišče.

63. Kisik v molekuli vode obdajajo štirje elektronski pari, zato ima voda obliko tetraedra.
 a) S pomočjo hibridizacije razloži obliko molekule vode.
 b) Voda ima v resnici obliko popačenega tetraedra, saj je kot med vodikoma meri 104,5 ° in ne 109,5 °. Razloži.

64. Odgovori!
 a) Zapiši elektronsko konfiguracijo elementa z vrstnim številom 80.
65. Razložil
 a) Kakšna je razlika med realnim in idealnim plinom? Zapiši van der Waalsovo enačbo in jo pojasni.
 b) Zakaj so medmolekulsko sile bolj pomembne za tekočine in trdne snovi kot za pline? Kdaj moramo tudi pri plinih upoštevati medmolekulsko sile?

66. Odgovori!
 a) Zakaj samo z uporabo atomskih orbital ne moremo pojasniti oblike molekule vode?
 b) Z uporabo hibridizacije pojasni linearno obliko molekule BeCl₂.

67. Neka snov ima v trdnem agregatnem stanju visoko temperaturo tališča in nizko električno prevodnost. Izmed naštetih spojih izberi tisto (ali tiste), ki ustreza (jo) opisu in svoj izbor pojasni: CO₂, Mg, NaCl, CCl₄

68. Razvrsti naslednje spojine po naraščajočem vrelišču: NH₃, H₂O, CH₄, HF.

69. V spodnjem seznamu obkroži molekule, ki imajo celokupni dipolni moment različen od nič. Izberi si eno od označenih molekulah, nariši njeno strukturno formulo in skiciraj dipolne momente vezi ter celokupni dipolni moment molekule.

 CO₂ H₂O CH₄ BF₃ NF₃ CH₃Cl

70. Razvrsti naslednje atome in ione glede na njihov radij od največjega proti najmanjšemu: K⁺, Cl⁻, S²⁻, Ar, Se²⁻.

71. Razvrsti naslednje atome in ione glede na njihov radij od največjega proti najmanjšemu: Ca²⁺, Sr²⁺, Rb⁺, Br⁻, Kr.

73. Rešil!
 a) Spojina AlF₃ ima temperaturo tališča 1040 °C, spojina NH₃ pa -77 °C. Razloži razliko s pomočjo medmolekulskih interakcij.
 b) Razvrsti naslednje spojine po naraščajočem vrelišču : NH₃, H₂O, CH₄, HF, H₂S.

74. Opiši razliko med kovalentno in ionsko vezjo. S katero vezjo so povezani atomi v molekulah MgCl₂ in PF₅?

75. Kaj je to mrežna energija? Za disociacijo 1 mola NaCl potrebujemo 788 kJ energije, za disociacijo 1 mola NaF pa 923 kJ energije. Razloži razliko.

76. Kaj je to mrežna energija? Za disociacijo 1 mola KCl na kalijeve in kloridne ione potrebujemo 715 kJ energije, za disociacijo 1 mola KF na kalijeve in floridne ione pa 821 kJ energije. Razloži razliko.
77. Z uporabo besed narašča in pada ter besedne zveze se ne spremeni dopolni naslednji stavek:
 Ko se premikamo navzdol po 6. skupini periodnega sistema, ionizacijska energija __________, velikost atomov __________, kovinski značaj __________, število valenčnih elektronov __________ in elektronegativnost __________.

78. Odgovori oz. rešil!
 a) Katera spojina ima višje vrelišče – NH₃ ali CH₄? Katera spojina ima višje tališče – KCl ali I₂?
 Odgovora utemelji!
 b) Kateri od ionov je večji – Se²⁻ ali Sr²⁺? Odgovor pojasni.

79. Zapiši elektronsko konfiguracijo svinca. Katera tri pravila uporabljamo pri določanju elektronske konfiguracije?

80. Če primerjate elektrone v 1 s orbitalah Na in Cl atoma, kateri imajo nižjo energijo? Razloži.

81. S pomočjo hibridizacije razloži tetraedrično razporeditev elektronskih parov fosforjevega triklorida.

82. Razvrsti naslednje atome in ione glede na njihov radij od največjega proti najmanjšemu: Na⁺, F⁻, O²⁻, S²⁻, Cl.

83. Poimenuj spodaj naštete spojine. Izberi tisto (-i, -e), ki ima (-ta, jo) dipolni moment enak 0. Svojo izbijo pojasni. Spojine: CO, CH₂Cl₂, PH₃, CO₂, SO₃, NH₃

84. Pojasni, kateremu od naštetih elementov moramo dovesti največ energije za odvzem elektrona: Cs, Ga, K, Bi, As.

86. Elementoma Br in Kr dodamo elektron. Ali je ta reakcija eksotermna ali endotermna? Zakaj?
 Zapiši elektronsko konfiguracijo za Br.

87. S pomočjo hibridizacije orbital C-atomov pojasni prostorsko porazdelitev atomov, ki sestavljajo molekulo etanala.

88. Razvrsti naslednje ione po velikosti : P³⁻, K⁺, Na⁺, and Cl⁻. Svojo rešitev na kratko pojasni.

89. Zapiši elektronsko konfiguracijo germanija in razloži tetraedrično strukturo molekule GeF₄.

90. Katera dva pogoja morata biti izpolnjena, da ima molekula celokupni dipolni moment različen od 0? Kako je dipolni moment povezan s tališčem in z vreliščem?

91. Kaj je to hidratacija? Kje se sprosti več energije – tekom hidratacije K⁺ ionov ali Ca²⁺ ionov?
 Odgovor razloži.
92. Razporedi naslednje ione po velikosti od največjega proti najmanjšemu: \(O^{2-}, F^-, Na^+, Mg^{2+} \)

93. Spodnje spojine razvrsti po naraščajočem vrelišču in svojo odločitev pojasni:
 \(\text{CH}_4, \text{SiH}_4, \text{GeH}_4, \text{SnH}_4 \)

94. Razloži, katero hibridizacijo bi uporabil za opis geometrije molekule \(\text{NBr}_3 \)? Ocenite kolikšna je dolžina vezi \(\text{N}–\text{Br} \) v molekuli \(\text{NBr}_3 \). Pomagajte si s podatki: dol. vezi \((\text{N–N}) = 145 \text{ pm} \), dol. vezi \((\text{N=N}) = 123 \text{ pm} \), dol. vezi \((\text{Br–Br}) = 228 \text{ pm} \).

95. Naslednje elemente razvrsti po naraščajoči ionizacijski energiji: \(\text{Ar}, \text{Se}, \text{S} \). Razvrstite pojasni!
Raztopine

96. V molski masi nekega sladkorja je delež ogljika 48,64 %, delež vodika pa 8,11 %. Če 17,5 g te spojine raztopimo v 100 g vode, dobimo raztopino, katere zmriščje je -2,2 °C. Izračunaj in zapiši molekulsko formulo neznanega sladkorja.

\[K_e (\text{H}_2\text{O}) = 1,86 \text{ K-kg/mol} \]

REŠITEV: C₆O₄H₁₂

97. Razložil

a) Zapiši enačbo za osmotski tlak, razloži osmozo in pojasni zakaj je osmotski tlak pri 0,1M raztopini NaCl približno dvakrat večji kot pri 0,1M raztopini glukoze.

b) Razloži, kaj so koligativne lastnosti in jih naštej.

98. Rešil

b) Skiciraj graf, ki prikazuje odvisnost energije vezi od medmolekulske razdalje.

99. Skiciraj fazni diagram vode in na njem razloži, kaj se zgodi z zmriščem in vreliščem čistega toplila, ko mu dodamo topljenec.

100. S pomočjo grafa delež topljenca/topila v odvisnosti od parnega tlaka topljenca/topila/ raztopine razloži Raultov zakon.

102. Zapiši enačbo za osmoznol tlak in razloži, kako stopnja disociacije in število ionov, ki nastanejo pri disociaciji ene molekule, vplivata na velikost osmoznega tlaka.

103. Zapiši enačbo za osmotski tlak, razloži osmozo in pojasni zakaj je osmotski tlak pri 0,1M raztopini NaCl približno dvakrat večji kot pri 0,1M raztopini glukoze.

104. V 4 ločene posode nalijete 10 l vode. V prvi posodi raztopite 1,5 mola NaCl, v drugi posodi raztopite 1,3 mola Na₂SO₄, v tretji posodi raztopite 2,0 mola KBr in v četrto posodi raztopite 2,0 mola MgCl₂. Razvrsti raztopine po padajoči temparaturi vrelišča. Svojo odločitev pojasni.

105. Zakaj ohlajene gazirane pijače manj »zašumijo« ob odprtju kot neohlajene? Odgovor razloži s pomočjo Henryjevega zakona in Henryjeve konstante.

106. S pomočjo znanja, ki si ga pridobil tekmo predavanj iz Kemije, razloži, zakaj kumarice shranjujemo v raztopini z NaCl. Kako bi kumarice izgledale, če bi jih shranjevali v vodi brez topljenca? Razloži, kaj se zgodi s solato, če jo predolgo pustimo v solatnem prelivu, ki vsebuje kis in sol?
107. Na spodnjem grafu je prikazana odvisnost parnega tlaka vode od temperature. Pripraviš dve raztopini: 0,1 M raztopino NaCl in 0,1 M raztopino CaCl₂. Na spodnji graf skiciraj potek parnega tlaka obeh raztopin in na kratko razloži dobljeno skico.

Kemijsko ravnotežje

109. V naslovičeni raztopini CaCO₃ je koncentracija Ca²⁺ ionov 5,3 × 10⁻⁵ M. Temperatura raztopine je 20 °C.
 a) Napišite izraz za topnostni produkt, K_{sp}, in ga izračunajte.
 b) Kako bi lahko povečal topnost CaCO₃ in kako bi jo lahko znižal?
 c) Če izrazimo topnost v enotah mol/l, katera sol – CaCO₃ ali Ag₂CO₃ – je bolj topna v vodi (K_{sp} (Ag₂CO₃) = 8,1 × 10⁻¹²)?
 REŠITEV: a) $K_{sp} = 2,81 \times 10^{-9}$, b) Ag₂CO₃ je bolj topen

110. V posodi imamo CO₂ (C = 0,632 M) in H₂ (C = 0,570 M). Pri 700 K poteče naslednja reakcija:

 $H_2 (g) + CO_2 (g) \rightarrow H_2O (g) + CO (g)$

Konstanta ravnotežja za napisano reakcijo pri omenjeni temperaturi znaša 0,106.
 a) Kakšna je sestava reakcijske mešanice v ravnotežju?
 b) Izračunaj molski delež in parcialni tlak posameznega plina ter celokupni tlak mešanice.
 REŠITEV: a) $C (CO_2) = 0,485$ M; $C (H_2) = 0,423$ M; $C (H_2O) = C (CO) = 0,147$ M; b) $p (CO_2) = 2,8 \times 10^6$ Pa, $p (H_2) = 2,5 \times 10^6$ Pa, $p (CO) = p (H_2O) = 0,86 \times 10^6$ Pa, $p = 70 \times 10^5$ Pa

111. V vodi zmešamo spojini Fe(NO₃)₃ in KSCN. Poteče reakcija:

 $Fe^{3+} (aq) + SCN^- (aq) \leftrightarrow FeSCN^{2+} (aq)$

 $K (T = 25 ^\circ C) = 142$

Koncentracije posameznih ionov v ravnotežju so naslednje: $C(FeSCN^{2+}) = 0,0768$ M, $C(Fe^{3+}) = C(SCN^-) = 0,0232$ M. V raztopino sedaj dodamo toliko Fe(NO₃)₃, je je nova koncentracija železovih ionov enaka 0,0300 M. Izračunaj nove koncentracije reaktantov in produktov, ko sistem doseže ravnotežje.
 REŠITEV: $C (Fe^{3+}) = 0,0273$ M, $C (SCN^-) = 0,0205$ M, $C (FeSCN^{2+}) = 0,0795$ M

112. Ravnotežna konstanta, K_p, za reakcijo N₂O₄ (g) \rightarrow 2 NO₂ (g) pri $T = 2300 ^\circ C$ znaša 1,7 × 10⁻¹. Posodo pri omenjeni temperaturi napolnemo z didušikovim tetraoksidom in pomerimo tlak pred začetkom reakcije, ki znaša 2,2 × 10² bara. Kakšen je parcialni tlak posameznih komponent in celokupni tlak v posodi, ko se vzpostavi ravnotežje? Kako se spremeni K_p, če pričnemo reakcijo z dvakratno količino didušikovega tetraoksidta?
 REŠITEV: $p (NO_2) = 6,08$ bar, $p (N_2O_4) = 217$ bar

113. V posodo z V = 1 l damo 0,924 mola spojine A. Pri temperaturi 700 °C razpade 38,8 % spojine A na spojini B in C po enačbi:

 $3 A (g) \rightarrow 5 B (g) + 2 C (g)$

 Izračunaj ravnotežno konstanto pri temperaturi 700 °C.
 REŠITEV: $K_p = 10^{26}$, $K_c = 0,024$
114. Spodnji graf prikazuje odvisnost topnosti CaCl₂ od temperature. Izračunaj topnostni produkt CaCl₂ pri 20 °C.

![Graph showing the solubility of CaCl₂ vs temperature]

REŠITEV: $K_{sp}(T=20\,^{°}C) = 1280$

115. V posodo z $V = 2\, l$ damo $0,824\, mola$ spojine A. Pri temperaturi $700\, °C$ razpade $62,4\%$ spojine A na spojini B_2 in C po enačbi:

$$4\, A(\text{g}) \rightleftharpoons 4\, B_2(\text{g}) + 3\, C(\text{g})$$

Izračunaj ravnotežno konstanto pri temperaturi $700\, °C$. Kako se bo spremenila ravnotežna konstanta, če damo spojino A v posodo z $V = 1,8\, l$?

REŠITEV: $K_c = 0,0544$

116. V posodo z $V = 2\, l$ damo $5,2\, g$ ogljika in $10\, g$ ogljikovega dioksida. Pri temperaturi $1200\, K$ se vzpostavi naslednje ravnotežje:

$$C(\text{s}) + CO_2(\text{g}) \rightleftharpoons 2CO_2(\text{g})$$

Izračunaj parcialni tlak ogljikovega monoksida v ravnotežju, če je ravnotežna konstanta enaka 6,4.

REŠITEV: $p(CO) = 21,25\times10^5\, Pa$

117. Pripravite $0,8\, M$ raztopino cinkovega diklora, ki popolnoma disociira. Če je pH raztopine previsok, se prične izločat netopen cinkov dihidroksid. Pod katero vrednostjo pH moramo obdržati raztopino, če je topnostni produkt cinkovega dihidroksida enak $3,0\times10^{-16}$?

REŠITEV: pH < 6,26

119. Imamo reakcijo: \(4\text{NH}_3 + 7\text{O}_2 \leftrightarrow 4\text{NO}_2 + 6\text{H}_2\text{O}\).
 a) Zapiši konstanto ravnotežja, \(K_c\).
 b) Ali je za dano reakcijo \(K_c\) odvisna od tlaka in temperature mešanice ali samo od temperature? Razloži.
 c) Imamo reakcijo: \(2\text{H}_2 (g) + \text{N}_2 (g) \leftrightarrow \text{N}_2\text{H}_4 (l)\). Standardna reakcijska entalpija, \(\Delta H^\circ\), znaša 50,63 kJ mol\(^{-1}\). Kakšen je odnos izmešanice reakcije v ravnovesju čez nekaj časa, in kaj se zgodi z ravnotežjem če:
 1. Zvišamo temperaturo: ______________________________
 2. Povečamo tlak: ______________________________
 3. Odstranjujemo \(\text{N}_2\text{H}_4\): ______________________________
Možni odgovori: ni spremembe, ravnotežje se pomakne v levo, ravnotežje se pomakne v desno

121. Rešil!
 a) Na desni sliki je prikazana temperaturna odvisnost ravnotežnih deležev reaktantov in produktova, ki nastopajo v reakciji: \(\text{N}_2 (g) + 3\text{H}_2 (g) \rightleftharpoons 2\text{NH}_3 (g)\). Ali je reakcija endotermna ali eksotermna? Razloži s pomočjo slike.
 b) Kako se spremenja konstanta za reakcijo, če povišamo tlak? Na grafu skiciraj odvisnost deležev reaktantov in produktova v odvisnosti od temperature pri povišanem tlaku.

122. Kako je definiran koeficient porazdelitve? Zakaj ga določamo? Zakaj se spreminja s pH-jem?

123. V posodi imamo CO\(_2\) in H\(_2\). Poteče naslednja reakcija:
 \[\text{H}_2 (g) + \text{CO}_2 (g) \rightarrow \text{H}_2\text{O} (g) + \text{CO} (g)\].
 Konstanta ravnotežja za napisano reakcijo pri temperaturi 700 °C znaša 0,63, pri temperaturi 1000 °C pa 1,66. Ali je reakcija eksotermna ali endotermna? Pojasni svojo odločitev.

124. Pb(NO\(_3\))\(_2\) v vodi popolnoma disocirira, Pb(IO\(_3\))\(_2\) pa je v vodi slabo topli (\(K_{sp} = 2,5 \times 10^{-13}\)). Razloži, kje je topnost Pb(IO\(_3\))\(_2\) boljša – v 0,5 \(\times\) 10\(^{-4}\) M raztopini Pb(NO\(_3\))\(_2\) ali v 5,0 \(\times\) 10\(^{-4}\) M raztopini Pb(NO\(_3\))\(_2\)?
125. Naslednja reakcija je eksotermna:
\[2 \text{C}_4\text{H}_{10} (g) + 13 \text{O}_2 (g) \leftrightarrow 8 \text{CO}_2 (g) + 10 \text{H}_2\text{O} (g) \]

Predvidi odziv ravnotežja na naslednje spremembe:

<table>
<thead>
<tr>
<th>sprememba</th>
<th>premik v levo</th>
<th>ni spremembe</th>
<th>premik v desno</th>
</tr>
</thead>
<tbody>
<tr>
<td>voda kondenzira</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dodamo \text{C}4\text{H}{10} (g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>povečamo volumen posode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>povišamo temperaturo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dodamo katalizator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

127. Na desni sliki je prikazana temperaturna

odvisnost izkoristka reakcije: \[\text{N}_2 (g) + 3 \text{H}_2(g) \rightleftharpoons 2 \text{NH}_3 (g) \]. Če veš, da je reakcija eksootermna, razporedi temperature \(T_1, T_2 \) in \(T_3 \) od najvišje proti najnižji. Kako se spremeni ravnovesna konstanta in kako izkoristek reakcije, če pri dani temperaturi povišamo tlak? Pojasni odgovore.

![temperaturna odvisnost izkoristka reakcije](image.png)

128. Spodnja reakcija prikazuje pridobivanje vodika iz metana:

\[\text{CH}_4 (g) + \text{H}_2\text{O} (g) \rightleftharpoons \text{CO} (g) + 3 \text{H}_2 (g) \quad \Delta_{\text{reak}} H^\circ = 206,13 \text{ kJ / mol} \]

Zapišite izraz za \(K_p \) in razložite, kako se \(K_p \) spremeni, če (a) zvišate tlak, (b) zvišate temperaturo, (c) uporabite katalizator.

129. Podaj dva načina, kako lahko vplivamo na čas, v katerem dosežemo ravnovesje.

130. Zapiši izraz in vrednost za ionsko produkt vode. Kako je ta vrednost povezana s pH-jem vode?

131. Magnezijev hidroksid je delno topen v vodi. Kemijska enačba za raztaljivanje magnezijevega hidroksida se glasi:

\[\text{Mg(OH)}_2(s) \rightleftharpoons \text{Mg}^{2+}(aq) + 2\text{OH}^-(aq) \]

Zapiši enačbo za topnostni produkt za magnezijev hidroksid. V čašo z vodo dodaš 1 g magnezijevega hidroksida in počakaš, da se vzpostavi ravnovesje. Nato dodaš še 1 g magnezijevega hidroksida. Razloži, kako se bosta spremenili koncentraciji \(\text{Mg}^{2+} \)in \(\text{OH}^- \)ionov.
Kisline, baze in redoks reakcije

132. Z merjenjem električne prevodnosti 1,00 M ocetne kisline pri 25 °C smo ugotovili, da je 0,42 % molekul ocetne kisline v ionizirani obliki.

a) Izračunaj \(K_a \) in \(pK_a \) ocetne kisline pri omenjeni temperaturi.

b) V raztopino dodamo nekaj NaOH, tako da je pri nespremenjenem volumnu raztopine končna koncentracija Na\(^+\) ionov 0,30 M. Izračunaj pH tako pripravljene raztopine.

REŠITEV: a) \(pK_a = 4,75 \), b) \(pH = 4,38 \)

133. Kis je vodna raztopina ocetne kisline. Za nevtralizacijo 5,54 g vzorca kisa smo potrebovali 30,10 ml 0,100 M NaOH. Kakšen je masni odstotek ocetne kisline v kisu?

REŠITEV: \(w (CH_3COOH) = 3,26 \% \)

134. Pri temperaturi 100 °C je \(K_w = 4,99 \times 10^{-13} \). Izračunaj \(pK_w \), pH in pOH vode pri 100 °C. Vrednosti pH in pOH podaj na dve decimalni mesti.

REŠITEV: \(pK_w = 12,302 \), pH = 6,15, pOH = 6,15

135. \(pK_a \) etanojske kisline je 4,75.

a) Izračunaj pH raztopine, če je koncentracija kisline 0,1 M, 0,01 M in 0,001 M.

b) Kolišen delež molekul kisline disociira?

REŠITEV: a) \(pH = 3,9 \); b) \(\alpha_1 = 0,013; \alpha_2 = 0,042; \alpha_3 = 0,125; \)

136. Raztopina koncentrirane fosforjeve (V) kisline (H\(_3\)PO\(_4\)) vsebuje 85 masnih % kisline, njena gostota pa znaša 1,684 g ml\(^{-1}\). Izračunaj volumen 5 M raztopine NaOH, ki ga potrebujemo za titracijo 10 ml kisline.

REŠITEV: \(V (NaOH) = 87,6 \) ml

137. 0,150 M raztopina metanojske kisline (HCOOH) ima pri 25 °C \(pK_a = 3,75 \), njena stopnja ionizacije pri tej koncentraciji pa je 3,5 %.

a) Izračunaj stopnjo ionizacije metanojske kisline, če raztopini dodamo toliko natrijevega metanoata (COONa), da je končna koncentracija slednjega 0,100 M, koncentracija metanojske kisline pa se ne spremeni.

b) Kaj se zgodi s pH-jem, če raztopini metanojske kisline dodamo natrijev metanoat? Odgovor razloži z uporabo Le Chatelierovega principa.

REŠITEV: a) \(\alpha = 1,80\times10^{-3} \); b) pH se bo povišal (iz 2,28 na 3,58)

138. Izračunaj pH in stopnjo ionizacije 0,225 M raztopine etilamina, ki ga uporabljamo pri sintezi nekaterih barvil in zdravil. \(pK_b \) etilamina pri \(T = 20°C \) znaša 3,19.

REŠITEV: \(pH = 12,08, \alpha = 0,053 \)

139. Kis je raztopina ocetne kisline v vodi. 5,54 g vzorca kisa nevtraliziramo s pomočjo 30,1 ml 0,050 M Ca(OH)\(_2\). Izračunaj masni delež ocetne kisline v kisu.

REŠITEV: \(w = 0,0326 \)
140. Izračunaj koncentracijo (v g / dm³) raztopine amonijaka, katere pH znaša 10,5.

\[K_b (\text{NH}_3) = 1,75 \times 10^{-5} \]

REŠITEV: \(y (\text{NH}_3) = 0,102 \text{ g l}^{-1} \)

141. Koncentracija amonijaka v čistilu za okna znaša 2,00 g dm³. Izračunaj pH čistila

REŠITEV: pH = 11,156

142. V 30 ml vode raztopimo neznani količini Na₂CO₃ in NaHCO₃. Raztopino titriramo z 0,1 M H₂SO₄. Če za indikator uporabimo fenolftalein (pKₐ = 9,3), se barva spremeni pri 12 ml dodane H₂SO₄, če pa za indikator uporabimo metiloranž (pKₐ = 3,5), se barva indikatorja spremeni pri 30 ml dodane H₂SO₄. Izračunaj začetni koncentraciji Na₂CO₃ in NaHCO₃.

REŠITEV: \(c (\text{Na}_2\text{CO}_3) = 0,08 \text{ M}, c (\text{NaHCO}_3) = 0,12 \text{ M} \)

143. Na laboratorijskem pultu imate dušikovo (V) kisilino, HNO₃, in ocetno kislino, HC₂H₃O₂.

a) Katera od omenjenih kislin je močnejša?

b) Kaj je konjugirana baza omenjenih kislin?

c) Katera od konjugiranih baz pod točko b je močnejša?

d) Ugotovite, kateri dve komponenti konjugiranih parov bi sodelovali pri prenosu protona in zapišite urejeno kemijsko reakcijo.

144. Uredi naslednje enačbe:

\[
\text{KMnO}_4 + \text{HCl} \rightarrow \text{KCl} + \text{MnCl}_2 + \text{Cl}_2 + \text{H}_2\text{O} \\
\text{K}_2\text{Cr}_2\text{O}_7 + \text{SO}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{Cr}_2(\text{SO}_4)_3 + \text{H}_2\text{O}
\]

145. HNO₃ in NH₃ reagirata z vodo.

a) Zapišite kemijsko enačbo za obe reakciji.

b) Ugotovite, v kateri reakciji igra voda vlogo kisline in v kateri igra vlogo baze? Razložite.

c) Pripraviš raztopin NaNO₃ in NH₄NO₃ enakih koncentracij. Katera raztopina bo imela višji pH? Razložite.

146. Izpiši oksidante in reducente iz spodnjih reakcij:

\[
\begin{align*}
\text{Cr}(s) + \text{Ni}^{2+}(aq) & \rightarrow \text{Cr}^{2+}(aq) + \text{Ni}(s) \\
\text{Cl}_2(g) + \text{Sn}^{2+}(aq) & \rightarrow 2\text{Cl}^-(aq) + \text{Sn}^{4+}(aq) \\
\text{H}_3\text{AsO}_4(aq) + 8\text{H}^+(aq) + 4\text{Zn}(s) & \rightarrow \text{AsH}_3(g) + 4\text{H}_2\text{O}(l) + 4\text{Zn}^{2+}(aq) \\
2\text{NO}_2(g) + 2\text{OH}^-(aq) & \rightarrow \text{NO}_2^-(aq) + \text{NO}_3^-(aq) + \text{H}_2\text{O}(l)
\end{align*}
\]

147. Atomi dušika imajo lahko več oksidacijskih številk. Določite oksidacijsko število dušika v naslednjih spojinah: N₂O₅, N₂O₄, N₂H₄, NH₃

148. 1M NH₃ titriras s 1M HCl in 1M CH₃COOH. Na istem grafu skiciraj poteka obeh titracijskih krivulj (pH v odvisnosti od dodanega volumena kisline) in komentiraj razlike.

149. Uredi naslednje redoks reakciji:

\[
\begin{align*}
\text{NaI} + \text{H}_2\text{SO}_4 & \rightarrow \text{H}_2\text{S} + \text{I}_2 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} \\
\text{KMnO}_4 + \text{HCl} & \rightarrow \text{KCl} + \text{MnCl}_2 + \text{Cl}_2 + \text{H}_2\text{O}
\end{align*}
\]
150. Prva spojina ima višji pKa kot druga. Katera spojina ima višjo stopnjo ionizacije? Katera je močnejša baza?

151. Uredi naslednji redoks reakcije:
 \[\text{NaI} + \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{S} + \text{I}_2 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O} \]
 \[\text{KMnO}_4 + \text{HCl} \rightarrow \text{KCl} + \text{MnCl}_2 + \text{Cl}_2 + \text{H}_2\text{O} \]

152. Katere med naslednjimi reakcijami so redoks reakcije? Za posamezno redoks reakcijo opredelite, katera snov se reducira in katera oksidira.
 (i) \[\text{Cu(OH)}_2 (s) + 2 \text{HNO}_3 (aq) \rightarrow \text{Cu(NO}_3)_2 (aq) + 2 \text{H}_2\text{O} (l) \]
 (ii) \[\text{Fe}_2\text{O}_3 (s) + 3 \text{CO}(g) \rightarrow 2 \text{Fe} (s)+ 3 \text{CO}_2 (g) \]
 (iii) \[\text{Sr(NO}_3)_2 (aq) + \text{H}_2\text{SO}_4 (aq) \rightarrow \text{SrSO}_4 (s)+ 2 \text{HNO}_3 (aq) \]
 (iv) \[4 \text{Zn}(s)+10 \text{H}^+ (aq)+2 \text{NO}_3^‐ (aq) \rightarrow 4 \text{Zn}^{2+} (aq)+\text{N}_2\text{O} (g) + 5 \text{H}_2\text{O} (l) \]

153. Opredeli naslednje reakcije kot obarjanje, nevtralizacijo ali oksidacijo/redukcijo:
 (i) \[2 \text{Na}_3\text{PO}_4 (aq) + 3 \text{Pb(NO}_3)_2 (aq) \leftrightarrow \text{Pb}_3(\text{PO}_4)_2 (s) + 6 \text{NaNO}_3 (aq) \]
 (ii) \[2 \text{PbS} (s) + 3 \text{O}_2 (g) \leftrightarrow 2 \text{PbO} (s) + 2 \text{SO}_2 (g) \]
 (iii) \[\text{H}_2\text{SO}_4 (aq) + 2 \text{NaOH} (aq) \leftrightarrow \text{Na}_2\text{SO}_4 (aq) + 2 \text{H}_2\text{O} (l) \]
 (iv) \[2 \text{Cu} (\text{SO}_4) (aq) + 4 \text{KI} (aq) \leftrightarrow 2 \text{CuI} (s) + \text{I}_2 (aq) + 2 \text{K}_2(\text{SO}_4) (aq) \]

156. Izvedemo titracijo 0,10 M raztopine ocetne kisline z 0,10 M raztopino NaOH in titracijo 0,0010 M raztopine ocetne kisline z 0,0010 M raztopino NaOH. Ugotovi, kateri titraciji pripada posamezna krivulja na sliki na naslednji strani. Odločitev utemelji.

157. Uredi naslednjo redoks reakcijo:
 \[\text{CuSCN} + \text{KIO}_3 + \text{HCl} \leftrightarrow \text{CuSO}_4 + \text{KCl} + \text{HCN} + \text{ICl} + \text{H}_2\text{O} \]
158. Uredi redoks reakcijo (iz rešitve mora biti razviden postopek urejanja):
\[\text{HCl} + \text{K}_2\text{Cr}_2\text{O}_7 + \text{C}_2\text{H}_5\text{OH} \rightarrow \text{CrCl}_3 + \text{CO}_2 + \text{KCl} + \text{H}_2\text{O} \]

161. V spodnji tabeli so zapisane energije, potrebne za prekinitev vezi med vodikom in halogenom:

<table>
<thead>
<tr>
<th></th>
<th>HCl</th>
<th>HF</th>
<th>HI</th>
<th>HBr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) (kJ mol(^{-1}))</td>
<td>432</td>
<td>570</td>
<td>298</td>
<td>366</td>
</tr>
</tbody>
</table>

Ali lahko postaviš kakšno pravilo, ki povezuje/napoveduje številke v zgornji tabeli? Kako bi lahko razložil trend, ki si ga opazil? Na podlagi podanih energij, potrebnih za prekinite v vezi, razvrsti naštete vodikove halogenide po predvidenih vrednostih pK\(_a\).

162. Elementom v naslednjih nevtralnih in nabitih molekulah določi oksidacijska števila: NaOCl, MnO_4\(^{2-}\), TiCl_4, SO_3\(^{2-}\), NO\(^+\)

163. Ali bo pH ekvivalentne točke pri titraciji šibke baze z močno kisline nad ali pod vrednostjo 7,0? Zakaj?

165. Spojine iz spodnjega seznama razvrsti od najmočnejšega oksidanta do najmočnejšega reducenta. Odgovor na kratko razloži.

- NO_3\(^-\)
- NO
- N_2H_4
- NH_3

166. Železov(II) sulfat(VI) reagira s kalijevim manganatom(VII) in žveplovo(VI) kislino. Pri reakciji nastane železov(III) sulfat(VI), manganov(II) sulfat(VI), kalijev sulfat(VI) in voda. Zapiši in uredi reakcijo. Iz rešitve mora biti jasno razviden potek urejanja.

168. Kalijev ferat(VI) reagira s kalijevim jodidom in žveplovo(VI) kislino. Pri reakciji nastane kalijev sulfat(VI), železov sulfat(VI), jod in voda. Zapiši in uredi reakcijo. Iz rešitve mora biti jasno razviden potek urejanja.
169. V 10 ml vode dodaš 10 ml 0,1 M HCl, nato pa še 10 ml 0,1 M Ca(OH)$_2$. Skiciraj potek krivulje odvisnosti pH od volumna raztopine.

170. V prvo erlenmajerico naliješ 100 ml 0,1 M raztopine ocetne kisline, v drugo erlenmajerico pa naliješ 100 ml 0,1 M raztopine fosforjeve(V) kisline. Na istem grafu skiciraj titracijski krivulji za obe raztopini, če jima dodajaš 0,1 M raztopino NaOH.

- pK_a (ocetne k.) = 4,75
- pK_{a1} (fosforjeva(V) k.) = 2,14
- pK_{a2} (fosforjeva(V) k.) = 7,20
- pK_{a3} (fosforjeva(V) k.) = 12,37

171. Tetraprotična kisлина (H$_4$Y) ima naslednje disociacijske konstante: 0’010, 2’1×10$^{-3}$, 7’8×10$^{-7}$ in 6’8×10$^{-11}$. Spodaj je prikazana titracijska krivulja omenjene kisline z NaOH. Kakšno je stehiometrično razmerje med kisilino in NaOH v točki, ki je označena s puščico. Svoj odgovor pojasni.
Kemijska termodinamika

172. Zanima te termodinamika naslednje reakcije:
\[2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g) \]
a) Z uporabo tvorbnih entalpij in entropij izračunaj reakcijsko entalpijo in entropijo.
\[\Delta H_f (\text{NaHCO}_3(s)) = -951 \text{ kJ mol}^{-1}, \Delta H_f (\text{Na}_2\text{CO}_3(s)) = -1131 \text{ kJ mol}^{-1}, \Delta H_f (\text{CO}_2(g)) = -394 \text{ kJ mol}^{-1}, \Delta H_f (\text{H}_2\text{O}(g)) = -242 \text{ kJ mol}^{-1} \]

\[\Delta S_f (\text{NaHCO}_3(s)) = 102 \text{ JK}^{-1}\text{mol}^{-1}, \Delta S_f (\text{Na}_2\text{CO}_3(s)) = 135 \text{ JK}^{-1}\text{mol}^{-1}, \Delta S_f (\text{CO}_2(g)) = 214 \text{ JK}^{-1}\text{mol}^{-1}, \Delta S_f (\text{H}_2\text{O}(g)) = 189 \text{ JK}^{-1}\text{mol}^{-1} \]

b) Do katere temperature bo ta reakcija tekla spontano?
REŠITEV: a) \(\Delta_r H = 135 \text{ kJ mol}^{-1} \), \(\Delta_r S = 334 \text{ J K}^{-1}\text{mol}^{-1} \), b) \(T > 404 \text{ K} \)

173. S pomočjo eksperimenta ugotovimo, da se parni tlak živega srebra s temperaturo spreminja. Rezultate zapišemo v tabelo:

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>80,0</th>
<th>100</th>
<th>120</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (torr)</td>
<td>0,0888</td>
<td>0,2729</td>
<td>0,7457</td>
<td>1,845</td>
</tr>
</tbody>
</table>

Na podlagi rezultatov v tabeli izračunaj izparilno entalpijo \(\Delta_{izp}H \) živega srebra in predvidi parni tlak pri 160 °C.
REŠITEV: \(\Delta_{izp}H = 61,4 \text{ kJ mol}^{-1} \), \(p (T = 160 \text{ °C}) = 4,24 \text{ torr} \)

174. Amonijak proizvajamo iz dušika v ozračju, ki v prisotnosti katalizatorja reagira z vodikom. Reakcija poteka pri visokih temperaturah in pod visokim tlakom:

\[\text{N}_2 + 3 \text{H}_2 \leftrightarrow 2 \text{NH}_3 \]

a) S pomočjo spodnjih podatkov izračunaj spremembo entropije pri nastanku enega mola amonijaka.
\[\Delta_{tv} S (\text{N}_2) = 191,6 \text{ J K}^{-1}\text{mol}^{-1}, \Delta_{tv} S (\text{H}_2) = 130,6 \text{ J K}^{-1}\text{mol}^{-1}, \Delta_{tv} S (\text{NH}_3) = 192,3 \text{ J K}^{-1}\text{mol}^{-1} \]

b) Tvorbena entalpija amonijaka znaša -46,0 kJ mol⁻¹. Ugotovi, do katere temperature reakcija poteka spontano.

c) Zakaj reakcijo v industriji izvajajo pri višjih temperaturah? Kakšno vlogo ima visok tlak?
REŠITEV:a) \(\Delta S = -99,4 \text{ J K}^{-1}\text{mol}^{-1} \), b) \(T < 463 \text{ K} \)

175. Za prirediti kemijsko reakcijo za gorenje etanola in izračunaj standardno reakcijsko entalpijo pri 37 °C. Na voljo imaš naslednje podatke:
\[\Delta_r H^\circ_{25°C} = -1367,5 \text{ kJ mol}^{-1}, \ c_p(\text{H}_2\text{O}) = 75,3 \text{ J K}^{-1}\text{mol}^{-1}, \ c_p(\text{CH}_3\text{COOH}) = 112 \text{ J K}^{-1}\text{mol}^{-1}, \ c_p(\text{O}_2) = 29 \text{ J K}^{-1}\text{mol}^{-1}, \ c_p(\text{CO}_2) = 37 \text{ J K}^{-1}\text{mol}^{-1}. \]
REŠITEV: \(\Delta_r H = -1366,3 \text{ kJ mol}^{-1} \)
176. V kemijskem priročniku poiščes graf odvisnosti parnega tlaka vode od temperature (glej sliko).
 a) S pomočjo Clausius-Clapeyronove enačbe izračunaj izparilno entalpijo vode.
 b) Izračunaj potreben tlak v avtoklavu, da bo sterilizacija potekala pri 121 °C.

 REŠITEV:
 a) \(\Delta_{izp} H = 42 \text{ kJ mol}^{-1} \),
 b) \(p = 1570 \text{ torr} \)

177. Z uporabo standardnih termodinamskih podatkov, izračunaj ravnotežno konstanto \(K \) pri \(T = 298,15 \) za naslednjo reakcijo:

\[
\text{Fe (s) + 2 HCl (aq) } \leftrightarrow \text{FeCl}_2 (s) + \text{H}_2 (g)
\]

\(\Delta_{r,\text{f}} G^\circ (\text{FeCl}_2 (s)) = -302,3 \text{ kJ mol}^{-1} \)
\(\Delta_{r,\text{f}} G^\circ (\text{HCl (aq)}) = -131,2 \text{ kJ mol}^{-1} \)

REŠITEV: \(K = 9,78 \times 10^6 \)

178. Pri \(T = 400 \) K spremljamo naslednjo reakcijo:

\[
2\text{NOCl (g)} \leftrightarrow 2\text{NO (g)} + \text{Cl}_2 (g)
\]

Če narišemo na graf, ki prikazuje odvisnost \(1/[\text{NOCl}] \) od časa, dobimo premico z naklonom \(6,7 \times 10^{-4} \text{ l mol}^{-1} \text{ s}^{-1} \). Kakšen je razpolovni čas za reakcijo, če je začetna koncentracija NOCl enaka 0,2 M?

REŠITEV: \(n = 2, t_{1/2} = 7460 \text{ s} \)

179. Izračunaj spremembo Gibbsove energije pri \(T = 25 \) °C za reakcijo:

\[
\text{N}_2 (g) + 3 \text{H}_2 (g) \leftrightarrow 2 \text{NH}_3 (g)
\]

\(\Delta_{\text{reak}} G^\circ = -33,3 \text{ kJ/mol} \),

če je v reakcijski zmesi parcialni tlak dušika enak 1,0 atm, \(p(\text{H}_2) = 3,0 \text{ atm} \) in \(p(\text{NH}_3) = 0,50 \text{ atm} \). Izračunaj ravnotežno konstanto za zapisano reakcijo pri \(T = 25 \) °C.

REŠITEV: \(\Delta G = -44,9 \text{ kJ/mol}, K = 7 \times 10^5 \)
180. Uporabi standardne reakcijske entalpije za reakcijo:

\[
\begin{align*}
N_2 (g) + O_2 (g) & \rightarrow 2 \text{ NO (g)} \\
\frac{1}{2} N_2 (g) + O_2 (g) & \rightarrow \text{ NO}_2 (g)
\end{align*}
\]
\[
\Delta_{\text{reak.}} H^0 = 183 \text{ kJ/mol}
\]
\[
\Delta_{\text{reak.}} H^0 = 33 \text{ kJ/mol},
\]
da izračunaš standardno reakcijsko entalpio za sledečo reakcijo:

\[
2 \text{ NO (g)} + O_2 (g) \rightarrow 2 \text{ NO}_2 (g)
\]
\[
\Delta_{\text{reak.}} H^0 = ?
\]
REŠITEV: \(\Delta_{\text{reak.}} H^0 = -117 \text{ kJ/mol} \)

181. Izračunaj \(\Delta_{\text{sež.}} H \) za propan pri \(T = 298 \text{ K} \), če imaš podane naslednje reakcije in njihove tvorbene entalpije:

\[
\begin{align*}
\text{C (s) + O}_2 (g) & \rightarrow \text{CO}_2 \\
3 \text{C (s) + 4 H}_2 (g) & \rightarrow \text{C}_3\text{H}_8 (g) \\
\text{H}_2 (g) + \frac{1}{2} O_2 (g) & \rightarrow \text{H}_2\text{O (l)}
\end{align*}
\]
\[
\Delta_{\text{tv}} H^0 = -393,7 \text{ kJ/mol} \\
\Delta_{\text{tv}} H^0 = -103,9 \text{ kJ/mol} \\
\Delta_{\text{tv}} H^0 = -285,8 \text{ kJ/mol}
\]
Reakcija sežiga propana se glasi:

\[
\text{C}_3\text{H}_8 (g) + 5 \text{ O}_2 (g) \rightarrow 3 \text{ CO}_2 (g) + 4 \text{ H}_2\text{O (l)}
\]
\[
\Delta_{\text{sež.}} H^0 = ?
\]
Na podlagi urejene reakcije sežiga propana napovej, ali bo \(\Delta G^0 \) bolj ali manj negativna od \(\Delta_{\text{sež.}} H^0 \).
REŠITEV: \(\Delta_{\text{sež.}} H = -2220 \text{ kJ}, \Delta G^0 \) bo manj negativna

182. Reakcijska entalpija za gorenje metana pri \(T = 298 \text{ K} \) zanaša:

\[
\text{CH}_4 (g) + 2 \text{ O}_2 (g) \rightarrow \text{CO}_2 (g) + 2 \text{ H}_2\text{O (l)}
\]
\[
\Delta_{\text{sež.}} H^0 = -890,4 \text{ kJ/mol.}
\]
Izračunaj sežigalno entalpijo pri \(T = 500 \text{ K} \), če je \(\Delta_{\text{izp}} H \) (H\(_2\)O, \(T=298 \text{ K} \)) = 43,83 kJ/mol in so toplotne kapacitete podane kot \(c_p = \alpha + \beta T + \gamma T^2 \), faktorji \(\alpha, \beta \) in \(\gamma \) za reaktante in produkte pa so zbrani v spodnji tabeli:

<table>
<thead>
<tr>
<th>molekula</th>
<th>(\alpha) / (J K(^{-1}) mol(^{-1}))</th>
<th>(\beta) / (mJ K(^{-2}) mol(^{-1}))</th>
<th>(\gamma) / (µJ K(^{-3}) mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4) (g)</td>
<td>14,16</td>
<td>75,5</td>
<td>-17,99</td>
</tr>
<tr>
<td>CO(_2) (g)</td>
<td>26,86</td>
<td>6,97</td>
<td>-0,82</td>
</tr>
<tr>
<td>O(_2) (g)</td>
<td>25,72</td>
<td>12,98</td>
<td>-3,862</td>
</tr>
<tr>
<td>H(_2)O (g)</td>
<td>30,36</td>
<td>9,61</td>
<td>1,184</td>
</tr>
</tbody>
</table>

REŠITEV: \(\Delta_{\text{sež.}} H^0 (T = 500 \text{ K}) = -803,4 \text{ kJ/mol} \)
183. Pri sežigu 1 mola propana se sprosti 2102 kJ energije, pri sežigu 1 mola propena pa se sprosti 1977 kJ energije. Vsi reaktanti in produkti so v plinastem agregatnem stanju. Pojasni razliko med sproščenima energijama in izračunaj reakcijsko entalpijo za reakcijo:

\[C_3H_8(g) + \frac{1}{2} O_2(g) \rightarrow C_3H_6(g) + H_2O(g) \]

REŠITEV: \(\Delta_{\text{rek}} H^0 = -125 \text{ kJ /mol} \)

184. Iz tabel izpišeš naslednje reakcije in njihove reakcijske entalpije:

1. \[Cl(g) + e^- \rightarrow Cl(g)^- \quad \Delta_{\text{rek}} H^0 = -349 \text{ kJ mol}^{-1} \]
2. \[Na(g) + Cl(g) \rightarrow Na(g)^+ + Cl(g)^- \quad \Delta_{\text{rek}} H^0 = 147 \text{ kJ mol}^{-1} \]
3. \[Na(g) + 2Cl(g) \rightarrow Na(g)^{2+} + 2Cl(g) \quad \Delta_{\text{rek}} H^0 = 4360 \text{ kJ mol}^{-1} \]

Izračunaj, koliko energije potrebuješ, da atomu Na odvzameš 1 elektron in koliko energije potrebuješ, da atomu Na odvzameš 2 elektrona. Razloži razliko med rezultatoma.

REŠITEV: \(\Delta_{\text{rek}} H^0 (1 \text{ e}^-) = 496 \text{ kJ /mol} \) \(\Delta_{\text{rek}} H^0 (2 \text{ e}^-) = 5058 \text{ kJ /mol} \)

185. Oceni spremembo reakcijske entalpije za reakcijo:

\[CH_4 + 2 \text{ O}_2 \rightarrow \text{ CO}_2 + 2 \text{ H}_2\text{O} \]

Pri oceni uporabi vrednosti energije vezi za: C-H (413 kJ/mol), O=O (498,3 kJ/mol), C=O (802 kJ/mol) in O-H (463 kJ/mol).

REŠITEV: \(\Delta_{\text{rek}} H = -807 \text{ kJ /mol} \)

186. Želite izračunati ravnotežno konstanto za reakcijo 2\text{NO}_2 \rightarrow \text{N}_2\text{O}_4 \) pri temperaturi \(T \). Na voljo imate naslednje podatke:

<table>
<thead>
<tr>
<th>(\Delta_{\text{rek}} G / \text{kJ mol}^{-1})</th>
<th>-10,4</th>
<th>-4,73</th>
<th>0,974</th>
<th>6,68</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q)</td>
<td>0,1</td>
<td>1</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

V katero stran teče reakcija, ko je \(Q = 100 \)? Razloži!

REŠITEV: \(K = 6,75 \)

![Spontan proces slike](attachment:spontan_proces_slike.png)
188. Na podlagi spodnjih reakcij izgorevanja in sežigalnih entalpij ugotovi, katera snov je bolj učinkovit vir energije za naše telo - maščobne kisline ali sladkorji. Razloži razliko v sežigalni entalpijih s pomočjo razlike v molekulski formuli.

\[
c_6h_{12}o_6(s) + 6 o_2(g) \leftrightarrow 6 co_2(g) + 6 h_2o(l) \quad \Delta_{se2}h^0 = -2802.5 \text{ kJ mol}^{-1}
\]
\[
c_{16}h_{32}o_2(s) + 23 o_2(g) \leftrightarrow 16 co_2(g) + 16 h_2o(l) \quad \Delta_{se2}h^0 = -9977.3 \text{ kJ mol}^{-1}
\]

189. Izračunaj spremembo entalpije za naslednjo reakcijo:

\[
c_6h_6(l) + 15/2 o_2(g) \rightarrow 6 co_2(g) + 3 h_2o(l)
\]

Na voljo imaš naslednje podatke:

1) \(6 c(s) + 3 h_2(g) \rightarrow c_6h_6(l)\) \(\Delta_\text{tv}h_1 = +49.0 \text{ kJ}\)

2) \(c(s) + o_2(g) \rightarrow co_2(g)\) \(\Delta_\text{tv}h_2 = -393.5 \text{ kJ}\)

3) \(h_2(g) + \frac{1}{2} o_2(g) \rightarrow h_2o(l)\) \(\Delta_\text{tv}h_3 = -285.8 \text{ kJ}\)

190. Spodaj so podane tri reakcije z reakcijskimi entalpijami:

- A-A + O=O \rightarrow A-O-O-A; \(\Delta_\text{reakt}h = 250 \text{ kJ}\)
- B-B + O=O \rightarrow B-O-O-B; \(\Delta_\text{reakt}h = -250 \text{ kJ}\)
- C-C + O=O \rightarrow C-O-O-C; \(\Delta_\text{reakt}h = 150 \text{ kJ}\)

Če privzamemo, da so energije vezi A-O, B-O in C-O enake, razvrsti vezi A-A, B-B in C-C od najšibkejše do najmočnejše in razvrstitev pojasni.
Adsorpcija

191. Pri adsorpciji ocetne kisline iz raztopine se je na 3,00 g aktivnega oglja adsorbiralo 5,525 mmola kisline z ravnotežno koncentracijo 0,325 mol l⁻¹ in 1,405 mmola kisline z ravnotežno koncentracijo 0,0091 mol l⁻¹. Določite konstanti a in b v Freundlichovi empirični enačbi

REŠITEV: $a = 2,83 \cdot 10^{-3} \text{mol}^b \text{dm}^3 \text{g}^{-1}$, $b = 0,38$

192. Raziskave adsorpcije N₂ na aktivno oglje pri -77°C so pokazale, da se pri ravnotežnem tlaku P na 0,0946 g oglja adsorbira masa m dušika, kot podaja naslednja tabela:

<table>
<thead>
<tr>
<th>P [atm]</th>
<th>m [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5</td>
<td>0,0119</td>
</tr>
<tr>
<td>10,0</td>
<td>0,0161</td>
</tr>
<tr>
<td>16,7</td>
<td>0,0181</td>
</tr>
<tr>
<td>25,7</td>
<td>0,0192</td>
</tr>
</tbody>
</table>

Določite konstanti a in b v Freundlichovi adsorpcijski izotermi za sistem aktivno oglje/N₂

REŠITEV: $a = 3,4 \cdot 10^{-3} \text{mol atm}^b \text{g}^{-1}$, $b = 0,2$

193. Pri merjenju adsorpcije fosforjeve kisline na aktivno oglje v vodnem mediju se je pri različnih ravnotežnih koncentracijah c fosforjeve kisline vezala na 1,00 kg aktivnega oglja naslednja množina fosforjeve kisline (glej tabelo):

<table>
<thead>
<tr>
<th>$c_{ravnotežna}$ [mol/l]</th>
<th>x/m [mol/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,051</td>
<td>0,036</td>
</tr>
<tr>
<td>0,083</td>
<td>0,077</td>
</tr>
<tr>
<td>0,110</td>
<td>0,107</td>
</tr>
<tr>
<td>0,170</td>
<td>0,198</td>
</tr>
</tbody>
</table>

Določite konstanti a in b v Freundlichovi izotermi.

REŠITEV: $a = 2,41 \text{mol}^b \text{dm}^3 \text{kg}^{-1}$, $b = 1,40$

194. Kako se spreminja količina adsorbirane snovi z naraščajočo temperaturo? Razloži.

195. Razloži, zakaj se lahko proti bakterijam in nezaželenim ostankom proteinov borimo tudi preko izbire primernega materiala.
196. Kaj predstavlja spodnji graf? S katero enačbo opišemo krivuljo? Zakaj je krivulja na začetku strma, nato pa položna?
Elektrokemija

197. Sestavi galvanski člen iz raztopin Cd\(^{2+}\) (c = 0,010 M) in Pb\(^{2+}\) (c = 0,100 M) ionov ter odgovarjajočih kovinskih elektrod. V napetostni vrste najdete sledeče podatke za standardni potencial kadmija in svinca pri 25 °C:

\[
\begin{align*}
\text{Cd}^{2+} + 2e^- & \rightarrow \text{Cd} \quad E^\circ = -0,40 \text{ V} \\
\text{Pb}^{2+} + 2e^- & \rightarrow \text{Pb} \quad E^\circ = -0,13 \text{ V}
\end{align*}
\]

a) Označi katodo, anodo, zapiši celokupno reakcijo in določi (razloži!), katera kovina se oksidira in katera reducira.

b) Izračunaj \(E\) galvanskega člena.

REŠITEV: b) \(E = 0,30 \text{ V}\)

198. Sestavi galvanski člen iz raztopin Cd\(^{2+}\) (c = ?) in Pb\(^{2+}\) (c = 0,100 M) ionov ter odgovarjajočih kovinskih elektrod. Napetost sestavljenega galvanskega člena pri \(T = 25 ^\circ C\) znaša 0,29 V. V napetostni vrsti najdeš sledeče podatke za standardni potencial kadmija in svinca pri 25 °C:

\[
\begin{align*}
\text{Cd}^{2+} + 2e^- & \rightarrow \text{Cd} \quad E^\circ = -0,40 \text{ V} \\
\text{Pb}^{2+} + 2e^- & \rightarrow \text{Pb} \quad E^\circ = -0,13 \text{ V}
\end{align*}
\]

a) Označi katodo, anodo, zapiši celokupno reakcijo in določi (razloži!), katera kovina se oksidira in katera reducira.

b) Predpostavi idealno raztopino in izračunaj neznano koncentracijo kadmijevih ionov (\(F = 96485 \text{ As mol}^{-1}\)).

c) Kako moramo spremeniti temperaturo in/ali koncentracijo kadmijevih ionov, da galvanski člen ne bo več proizvajal električnega toka?

REŠITEV: b) \(c = 0,021 \text{ M}\), c) zvišamo \(T\) in/ali zvišamo \(c\) (Cd\(^{2+}\))

199. V napetostni vrste najdete sledeče podatke za standardni potencial niklja in mangana pri 25 °C:

\[
\begin{align*}
\text{Ni}^{2+} + 2e^- & \rightarrow \text{Ni} \quad E^\circ = -0,23 \text{ V} \\
\text{Mn}^{2+} + 2e^- & \rightarrow \text{Mn} \quad E^\circ = -1,18 \text{ V}
\end{align*}
\]

Nariši galvanski člen, ki ga sestavlja nikljeva in manganova elektroda, zapiši celokupno reakcijo in izračunaj ravnotežno konstanto. Kakšno mora biti razmerje [Ni\(^{2+}\)]/[Mn\(^{2+}\)], da bo reakcija tekla v obratno smer, kot je to mogoče sklepati iz napetostne vrste?

REŠITEV:

200. Ugotovi in razloži (lahko tudi s pomočjo računa), ali bodo naslednje reakcije potekle (potrebne podatke poišči v tabeli standardnih napetosti za reakcije na polčlenih):

\[
\begin{align*}
\text{Cu}^{2+} & + 2\text{Ag}(s) \rightarrow \text{Cu}(s) + 2\text{Ag}^+ \\
\text{Mg}^2+ & + 2\text{H}^+ \rightarrow \text{Mg}^{2+} + \text{H}_2(g) \\
2\text{Zn}^{2+} & + 4\text{OH}^\text{-} \rightarrow 2\text{Zn}^{2+} + \text{O}_2(g) + 2\text{H}_2\text{O}(l)
\end{align*}
\]

201. Kakšen je namen elektrolitskega ključa v galvanskem členu? Ali bi se napetost galvanskega člena spremenila, če bi namesto enega uporabili dva elektrolitska ključa?
Kemijska kinetika

 a) Izračunaj čas, ki je potreben, da koncentracija substance A pade na eno petino prvotne vrednosti.
 b) Hitrost kemijske reakcije se podvoji, ko temperaturo zvišamo iz 20 °C na 35 °C. Izračunaj aktivacijsko energijo za preučevan proces.
 REŠITEV: a) t = 120 s, b) $E_a = 34,7$ kJ mol⁻¹

203. Reakcija A → 2B + C je 1. reda. Po 240 s se koncentracija A zmanjša za 40 %. V kolikšnem času se koncentracija A zmanjša za 80 %? V kolikšnem času ostane 5 % snovi A?
 REŠITEV: t = 756 s, t = 1407 s

204. Reakcija A ↔ 2B + C je 2. reda. Po 240 s se koncentracija A zmanjša za 30 %. V kolikšnem času se koncentracija A zmanjša za 85 %? V kolikšnem času ostane še 1 % snovi A?
 REŠITEV: t = 3276 s, t = 57225 s

205. Pri 300 °C dušikov dioksid razpade na dušikov oksid in kisik:

$$2 \text{NO}_2 (g) \leftrightarrow 2 \text{NO} (g) + \text{O}_2 (g)$$

Izmerite začetno hitrost zgornje enačbe pri štirih različnih začetnih koncentracijah dušikovega dioksida. Vaše rezultate prikazuje spodnja tabela:

<table>
<thead>
<tr>
<th>$C(\text{NO}_2)$ / M</th>
<th>0,015</th>
<th>0,010</th>
<th>0,0080</th>
<th>0,0050</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0 / M s⁻¹</td>
<td>$1,22 \times 10^{-4}$</td>
<td>$5,40 \times 10^{-5}$</td>
<td>$3,46 \times 10^{-5}$</td>
<td>$1,35 \times 10^{-5}$</td>
</tr>
</tbody>
</table>

Na podlagi eksperimentalnih podatkov določi red reakcije razpada dušikovega dioksida in konstanto reakcijske hitrosti pri $T = 300$ °C.
 REŠITEV: $n = 2$, $k = 0,542$ M⁻¹ s⁻¹

206. Spremljate kemijsko reakcijo A → 2B. Koncentracija reagenta A se spreminja v skladu z enačbo:

$$c_A = 0,01 \times e^{-2,05 \times 10^{-3} s^{-1} \times t}$$

Izračunaj začetno hitrost kemijske reakcije in hitrost kemijske reakcije 500 s po začetku. V reakcijsko zmes dodamo katalizator in hitrost reakcije se podvoji. Zapiši enačbo, ki bo podajala odvisnost koncentracije reagenta A od časa v prisotnosti katalizatorja. Pri vseh rešitvah mora biti razviden potek reševanja!
 REŠITEV: $v_0 = 2,05 \times 10^{-5}$ M s⁻¹, $v_{500 \ s} = 2,05 \times 10^{-5}$ M s⁻¹, $c_A = 0,01 e^{-4,1 \times 10^{-5} s^{-1} \times t}$
207. Preučuješ reakcijo 2. reda:

\[A \rightarrow P \]

Če je začetna koncentracija reaktanta A enaka 0,8 M in \(T = 20 ^\circ C \), znaša razpolovni čas reakcije 25 sekund. Če povišamo temperaturo iz 20 na 30 °C, se hitrost reakcije podvoji. Izračunaj čas, v katerem pade koncentracija reaktanta A na eno petino prvotne vrednosti (\(T = 20 ^\circ C \)). Izračunaj aktivacijsko energijo za opisan proces.

REŠITEV: \(t = 100 \text{ s}, E_a = 51 \text{ kJ mol}^{-1} \)

208. Saharozo hidroliziramo do fruktoze in glukoze. Če tekom hidrolize spremljamo koncentracijo saharoze, dobimo naslednje podatke:

<table>
<thead>
<tr>
<th>Čas / min</th>
<th>0</th>
<th>60,0</th>
<th>96,4</th>
<th>157,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(saharoza) / M</td>
<td>0,57</td>
<td>0,45</td>
<td>0,39</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Izračunaj red reakcije in čas, ki ga potrebujemo za hidrolizo 95 % saharoze. Kako bi lahko skrajšal izračunani čas?

REŠITEV: \(n = 1, t (95 \%) = 760 \text{ min} \)

209. Aktivacijska energija za reakcijo prvega reda znaša 68,5 kJ/mol pri \(T = 25,0 ^\circ C \). Na koliko moramo povišati temperaturo, da se bo konstanta reakcijske hitrosti podvojila? S pomočjo Arrheniusove enačbe razloži, kaj se zgodi s potekom kemijske reakcije, če temperaturo znižujemo proti 0 K.

REŠITEV: \(T_2 = 305,7 \text{ K} \)

210. Pri \(T = 400 \text{ K} \) spremljamo naslednjo reakcijo:

\[2\text{NOCl}(g) \leftrightarrow 2\text{NO}(g) + \text{Cl}_2(g) \]

Če narišemo na graf, ki prikazuje odvisnost \(1/[^{[\text{NOCl}]} \) od časa, dobimo premico z naklonom \(6,7 \times 10^{-4} \text{ l mol}^{-1} \text{ s}^{-1} \). Kakšen je razpolovni čas za reakcijo, če je začetna koncentracija NOCl enaka 0,2 M?

REŠITEV: reakcija 2. reda, \(t_{1/2} = 7460 \text{ s} \)

211. Preučuješ naslednjo elementarno reakcijo:

\[A + B \rightarrow P \]

Začetna koncentracija reaktanta A znaša 0,8 M in začetna koncentracija reaktanta B znaša 0,7 M. Če povišamo temperaturo iz 20 na 40 °C, se začetna hitrost reakcije potroji. Izračunaj aktivacijsko energijo za opisan proces. S pomočjo aktivacijske energije razloži, zakaj reakcija poteče hitreje pri višji temperaturi.

REŠITEV: reakcija 2. reda, \(E_a = 41900 \text{ J mol}^{-1} \)

212. Preučuješ naslednjo elementarno reakcijo:

\[2A \rightarrow P \]

Na začetku imamo 2,4 g reaktanta A. Po 30 minutah reakcije ostane še 6 g reaktanta A. Izračunaj razpolovni čas reakcije in maso reaktanta A, ki ostane po 1 uri.

REŠITEV: \(t_{1/2} = 10 \text{ min}, m(A)_{t = 1 \text{ h}} = 0,34 \text{ g} \)
213. Za reakcijo: \(2N_2O_5(g) \rightarrow 4NO(g) + O_2(g)\) napiši izraz za hitrost kemijske reakcije za (i) porabo \(N_2O_5\); (ii) nastanek \(NO\); (iii) nastanek \(O_2\).

214. Reakcija \(A \rightarrow B\) je elementarna reakcija. Določi red reakcije in razloži, kako lahko vplivaš na hitrost podane reakcije.

215. Odgovori!
 a) S pomočjo Arrheniusove enačbe razloži, kako temperatura vpliva na hitrost kemijske reakcije.
 b) Reakcija je pri sobni temperaturi potekla do konca v 4 h. Dobili smo 50 g produkta. Reakcijo smo s svežimi reagenti izvedli pri 40 °C in tokrat je potekla do konca v 1 h, dobili pa smo »le« 35 g produkta. Razloži.

216. Razloži pojem aktivacijska energija. Kako lahko s tem pojmom razložimo, da se pri nekaterih primerih reakcijska hitrost močno poveča že pri majhnem povečanju temperature?

217. S pomočjo Arrheniusove enačbe enačbe razloži, katerima pogojema mora biti zadoščeno, da poteče kemijska reakcija?

218. Pri temperaturi \(T_1\) in \(T_2\) spremljate reakcijo \(A \rightarrow B\) in ugotovite, da je 1. reda. Nariši graf, ki prikazuje spreminjanje koncentracije reagenta \(A\) po času pri obeh temperaturah. Upoštevaj, da je \(T_1 < T_2\).

219. Reakcija \(A + B \rightarrow C\) je reakcija 2. reda. Nariši graf odvisnosti koncentracije produkta \(C\) od časa in razloži, kdaj je hitrost reakcije največja.

220. Za naslednji reakciji smo eksperimentalno določili njuni hitrosti:

\[
\text{CH}_3\text{N}==\text{N}=\text{CH}_3 (g) \rightarrow \text{C}_2\text{H}_6 (g) + \text{N}_2 (g) \quad \frac{\text{d}}{\text{d}t} = k[C_2N_2H_6]
\]

\[
2\ \text{NO}_2 (g) + \text{F}_2 (g) \rightarrow 2\ \text{NO}_2\text{F} (g) \quad \frac{\text{d}}{\text{d}t} = - \frac{1}{2} \times \frac{\text{d}}{\text{d}t}\text{[NO}_2]\ = k[\text{NO}_2][\text{F}_2]
\]

Zapiši skupni red posameznih reakcij in razloži kako se bo spremenila hitrost posamezne reakcije, če v nekem trenutku podvojimo koncentracijo vseh reaktantov.

221. Reakcija \(A + B \rightarrow C\) je reakcija 2. reda. Na istem grafu nariši odvisnost koncentracije produkta \(C\) od časa, če spremljaš reakcijo brez dodanega katalizatorja in če v reakcijsko zmes na začetku dodaš katalizator.

222. V naših jetrih poteka oksidacija etanola v etanal.
 Koncentracija alkohola se s časom spreminja kot je prikazano na desnem grafu. Kakšen je red reakcije pretvorbe etanola v etanal? Nariši graf, na katerem bo prikazana odvisnost hitrosti omenjene reakcije od časa.

224. Razloži in skiciraj, kako bi lahko določil vrednost parametra, ki ga imenujemo aktivacijska energija.
Organska kemija

225. Razložil!
 a) Tvorbena entalpija cis-but-2-ena je −7,1 kJ/mol, trans-but-2-ena pa −11,4 kJ/mol. S pomočjo strukturnih razlik razloži, kateri od obeh izomerov je stabilnejši.
 b) Razloži, zakaj ciklopropan spremlja pozitivna tvorbena entalpija (+12,8 kJ/mol), ciklopentan pa negativna (-18,3 kJ/mol). (Namig: spomni se strukture obeh cikloalkanov)

226. Razložil!
 a) Rezultati nekaterih meritev kažejo na to, da ima ocetna kislina dvakrat višjo molekulsko maso, kot jo ima v resnici. Zakaj?
 b) Katera spojina predstavlja boljše milo: CH₃-CH₂-COO⁻ Na⁺ ali CH₃(CH₂)₁₀-COO⁻ Na⁺? Zakaj?
 c) Zakaj karboksilna skupina, če jo primerjamo z ostalimi funkcionalnimi skupinami, najlažje odda proton. Katera kislina je močnejša in zakaj: FCH₂COOH ali ICH₂COOH?

227. Dopolni reakcije:

228. Reši/razložil!
 a) Oštevilči atome ogljika v spodaj prikazani spojini in jih glede na njihovo geometrijo razporedi v linearno, planarno in tetraedrično skupino.
 b) Izberi en »planaren« atom ogljika in s pomočjo hibridizacije razloži njegovo geometrijo.
229. Katera tekočina ima višje vrelišče? Zakaj?

CHCl₃ ali CCl₄

230. Reši!

a) Po IUPAC nomenklaturi poimenuj spodnji spojini:

b) Nariši strukturno formulo citronske kisline in razloži kje v naravi jo lahko najdemo ter zakaj je pomembna.

HCN

HNO₃

KMnO₄
232. Razložil
 a) Razloži in zapiši, kateri monomer bi uporabili za nastanek polimera z naslednjo strukturo:

```
  H3C
  H\[C\[H\[H\[n
H3C
```

b) Na spojinah heks-1,5-dien in heks-2,4-dien poteče hidrogenacija. Pojasni, pri kateri reakciji se bo sprostilo več energije.

234. Odgovori!
 a) Kakšna je razlika med karboksilnimi in maščobnimi kislinami? Kaj označujejo pojmi mononenasičena, nenasičena in polinenasičena?
 b) Kako prisotnost cis dvojnih vezi vpliva na obliko molekule maščobne kisline? Kakšen je vpliv dvojnih vezi na temperaturo tališča maščobnih kislin?

235. Odgovori!
 a) Zakaj je metanol bolj strupen kot etanol?
 b) 1-metilbenzen ima višje vrelišče in nižje tališče kot benzen. Razloži.

236. Naslednje spojine razvrsti po naraščajoči temperaturi vrelišča: n-butan, propan, 2-metilpropan, n-pentan, 1-kloropentan in NaCl.

239. S pomočjo hibridizacije razloži linearno geometrijo molekule etina.

240. Opiši, kako nastane vodikova vez in skiciraj dvojno intermolekularno vodikovo vez, ki nastane med dvema karboksilnima skupinama.

241. Poimenuj spodnji spojini in ugotovi, katera ima višje vrelišče. Svojo odločitev utemelji!

```
\[
\text{O} \\
\text{CH} \text{COOH}
\]
\[
\text{O} \\
\text{CH} \text{CONH}_2
\]

\[
\begin{align*}
\text{HCN} & \quad \text{+} \quad \text{H}^+ \\
\text{K}_\text{MnO}_4 & \quad \text{+} \quad \text{H}^+ \\
\text{H}_\text{NO}_3 & \quad \text{+} \quad \text{H}_2\text{SO}_4
\end{align*}
\]

243. Hidratacijo cis-akonitne kisline v izocitronsko kislinjo (del Krebsovega cikla) opisuje reakcija:

\[
\text{cis-akonitna kisline} + \text{H}_2\text{O} \rightarrow \text{izocitronska kisline}
\]

Razloži, kaj je neobičajnega glede zgornje reakcije in zakaj sploh lahko poteče.

244. Kako nastanejo fosfatni estri in kje jih srečamo?

245. Kaj je kritična micelna koncentracija in zakaj je tvorba micel spontan proces?

246. Poimenuj spodnje spojine in obkroži tisto, ki je po tvojem mnenju sestavni del izločka dihurja. Svojo odločitev pojasni.

\[
\begin{align*}
\text{CH}_3 & \quad \text{O} & \quad \text{HCN} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\end{align*}
\]

248. Kako so razporejeni atomi C v molekuli 2,3-dimetilbut-2-en (linearno, planarno ali tetraedrično)? Pojasni z uporabo hibridizacije.

249. V katero skupino organskih spojin sodita spodnji spojini, kako dobimo spojino B iz spojine A in v kateri industriji je ta postopek pomemben?

\[
\begin{align*}
\text{OH} & \quad \text{O} & \quad \text{H}^+ \\
\text{Spojina A} & \quad \text{Spojina B} \\
\end{align*}
\]

\[
\text{HBr} + \text{H}_2\text{O} \xrightarrow{\Delta \text{NaOH}} +
\]


253. Opiši razliko v obnašanju NaOH in CH₃OH v vodni raztopini. Če sta koncentraciji enaki, katera raztopina bolje prevaja električni tok?

254. Rešil!
   a) Kaj označuje izraz »peptidna vez«? Zakaj je peptidna vez planarna?
   b) Katere fosfolipide poznamo in zakaj imajo amfipatski značaj? Kako je ta značaj povezan s celičnimi membranami?

255. Dopolni spodnjo enačbo in zapiši imena reaktantov in produktov:

\[
\text{\(H^+\)} + \text{\(\text{H}_2\text{O}\)} \rightleftharpoons \text{\(\text{H}_3\text{O}^+\)}
\]


257. Pogost vzrok za zamešen umivalni k je nalaganje triacilgliceridov v odtoku. Razloži, zakaj lahko v omenjenem primeru odtok odmašimo s pomočjo pripravka, ki vsebuje NaOH.


   (i) \((\text{CH}_3)_3\text{CBr}\) ali \(\text{CH}_3\text{CH}(\text{CH}_3)\text{Br}\)
   (ii) \(\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_2\text{Br}\) ali \(\text{CH}_3\text{CH}(\text{CH}_3)\text{OH}\)

260. Fenol je aromatski alkohol, katerega \(p\text{K}_a = 9,9\). Ta vrednost je precej izven območja \(p\text{K}_a\) vrednosti običajnih alkoholov (\(p\text{K}_a = 16 -20\)). Zakaj? Kateri alkohol (aromatski ali »običajni«) lažje odda proton?

261. Kaj so to maščobne kisline? Razloži, zakaj so višje nasičene maščobne kisline trdne pri sobni temperaturi, nenasičene maščobne kisline pa so večinoma tekoče.

262. Prepiši reakcijo, jo dopolni in zapiši imena vseh spojin, ki v reakciji sodelujejo.
263. Rezultati nekaterih meritev kažejo na to, da ima ocetna kislina dvakrat višjo molekulsko maso, kot jo ima v resnici. Na podlagi katerih meritev dobite omenjen rezultat in zakaj?


265. S stališča termodinamike razloži, zakaj je micelizacija spontan proces. Kakšne spojine se lahko združujejo v micele?

266. Izpiši molekule, ki imajo dipolni moment različen od 0. Svoje odločitve na kratko pojasni.

\[
\begin{array}{c}
\text{CHF}_3 \\
\text{NF}_3 \\
\text{CH}_2\text{F}_2
\end{array}
\]

267. Poimenuj naslednje spojine, jih razvrsti po vredišču in razvrstitev pojasni:

\[
\begin{array}{c}
\text{Cl} \\
\text{OH} \\
\text{O} \\
\text{OH} \\
\text{OH}
\end{array}
\]


\[
\begin{array}{c}
\text{avobenzon} \\
\text{dioksibenzon}
\end{array}
\]

269. Kaj so to polifunkcionalne karboksilne kisline in kje jih najdemo? Zapiši splošne formule in imena vsaj treh polifunkcionalnih karboksilnih kislin.

270. \( pK_a \) vrednost fenola znaša 9,9, \( pK_a \) vrednost cikloheksanolja pa znaša 16. Razloži razliko v vrednostih \( pK_a \) omenjenih spojin.

271. Zakaj so Hg, As in Pb toksični za naše telo?
272. Razloži razliko med glicerofosfolipidi in sfingofosfolipidi. Kje jih najdemo?


274. Prepiši reakcijo, jo dopolni in zapiši imena vseh spojin, ki v reakciji sodelujejo:

\[
\begin{align*}
\text{Br}_2 & \rightarrow \text{KMnO}_4 \\
\text{OH} & 
\end{align*}
\]

275. Kateri od spodaj prikazanih geometrijskih izomer oktadekatrienske kisline je cis/trans izomer in kateri ima nižjo temperaturo tališča ter zakaj?

276. Prepiši in dopolni reakcijo ter pojasni, zakaj spodaj narisano spojino uvrščamo med beta keto kisline.

277. Kaj so to lipoproteini, v kateri skupini razvrščamo lipoproteine v krvi in kako so lipoproteini povezani s holesterolom?

278. Nariši strukturno formulo fosforjeve (V) kisline in poljubnega fosfatnega diestra. Zakaj so fosfatni estri pomembni? Poznaš še kakšne druge vrste estrov?
279. Prepiši reakcijo, jo dopolni in zapiši imena vseh spojin, ki v reakciji sodelujejo:

\[ \text{H}_2\text{SO}_4 \]

280. Na podlagi spodnje strukturne formule napiši, ali je navedena spojina aromatska ali alifatska ter navedi v katere skupine spojin se uvršča glede na vse tri funkcionalne skupine, ki so vezane na obroč.

281. Kaj so to mila in kako jih dobimo? Razloži, kakšen je po vašem mnenju njihov pH?


\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_2‐\text{NH}_2 & \quad \text{CH}_2\text{NHCH}_2\text{CH}_3 & \quad (\text{CH}_3)_3\text{N}
\end{align*}
\]


285. Nariši vse izomere aldehida z molekulsko formulo C₆H₁₂O, ki imajo vsaj en tercialni C-atom.


287. Kaj prikazuje spodnja reakcija? Na kakšen način lahko vplivamo na izkoristek reakcije?

288. Izvedemo elektrofilno substitucijo na benzenu z elektrondonorsko skupino in na benzenu z elektronakceptorsko skupino. Razloži, v katerem primeru bo karbokationski intermedij imel nižjo energijo in zakaj?
289. Prepiši reakcijo, jo dopolni in zapiši imena vseh spojin, ki v reakciji sodelujejo:

\[
\begin{align*}
\text{Br}_2 & \quad \text{KMnO}_4 \\
\rightarrow & \quad \text{NaOH, nizka T}
\end{align*}
\]

290. Kaj so to epoksidi? Kako nastanejo in zakaj lahko škodujejo našemu organizmu?

291. S pomočjo Hückelovega pravila in hibridizacije razloži, ali je spodnja spojina aromatična ali ne.

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

292. Zapiši reakcijski mehanizem za reakcijo etanala z etanolom.

293. Opiši razliko v obnašanju CH₃COOH in CH₃CH₂OH v vodni raztopini. Če sta koncentraciji enaki, katera raztopina bolje prevaja električni tok?


\[
\begin{array}{c}
\text{NH}_2 \\
\end{array} + \begin{array}{c}
\text{Cl} \\
\text{Cl}
\end{array} \rightarrow
\]

295. Škrob in celuloza spadata med polisaharide rastlinskega izvora. Kakšna je razlika med njima in kakšen je njun pomen v naši prehrani?

296. Spodaj je narisana skeletna formula spojine piperin, ki je odgovorna za »okus« popra.

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

Preriši skeletno formulo in označi vse sp³ hibridizirane C-atome. Kakšna je hibridizacija N-atoma? Preštej in zapiši število π elektronov v spojini.
297. Vaša simpatija vas poskuša očarati in vam razloži, da se ob prekinitvi vezi v molekuli ATP sprošča energija, ki jo potrebujemo za delovanje celic. Razložite ji/mu, zakaj je njena/njegova izjava napačna in jo/ga podučite, kako bi se tovrstna izjava morala glasiti.

298. V jeklenki je 10 kg butana. Skiciraj energetski diagram sežiga butana in ga na kratko razloži. Razloži, kje se sprosti več energije – pri sežigu enega mola propana ali enega mole butana?


300. Preriši spodnji skeletni formuli in označi tipe hibridizacij na atomih ogljika, dušika in kisika. Svojo rešitev na kratko razloži.


302. Nariši strukturni formuli benzojske in ocetne kisline. Razloži, katera je bolj topna v vodi. Kako bi (poleg zvišanja temperature) lahko povečal topnost obeh spojin?


304. Razloži, katera od spojin ima višji $pK_a$ in zakaj: fenol ali cikloheksanol. Kako bi se spremenil $pK_a$ spojin, če bi na 2. C-atom vezali halogen?
Viri in literatur


2. Solutions for the problems about „Calculation of pH in the case of monoprotic acids and bases”  

3. Thermochemistry practice problems  

4. Exercises Topic 4: Thermochemistry  
   http://ocw.uc3m.es/ingenieria-quimica/chemistry-for-biomedical-engineering-2012/exercises/exercises-topic-4 (10. 10. 2019)

5. Exercises Topic 6: Chemical kinetics  
   http://ocw.uc3m.es/ingenieria-quimica/chemistry-for-biomedical-engineering-2012/exercises/exercises-topic-6 (10. 10. 2019)

6. Lazaridis T. General Chemistry I: Exams  

7. Lazaridis T. General Chemistry II: Exams  

8. LibreTexts project, Chemistry, Homework Exercises  
   https://chem.libretexts.org/Homework_Exercises (10. 10. 2019)


