Vaje iz splošne kemije

Zbirka nalog

Druga, dopolnjena izdaja

Helena Abramovič, Blaž Cigić, Milica Kač, Lea Pogačnik,
Darja Rudan-Tasič, Mihaela Skrt, Nataša Šegatin

Ljubljana, 2006
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uvod</td>
<td>1</td>
</tr>
<tr>
<td>Splošne naloge in vprašanja</td>
<td>7</td>
</tr>
<tr>
<td>Gostota trdnih snovi in tekočin</td>
<td>19</td>
</tr>
<tr>
<td>Plinski zakoni</td>
<td>30</td>
</tr>
<tr>
<td>Raztopine</td>
<td>49</td>
</tr>
<tr>
<td>Kemijsko ravnotežje</td>
<td>63</td>
</tr>
<tr>
<td>Topnostni produkt</td>
<td>70</td>
</tr>
<tr>
<td>Hidratno vezana voda</td>
<td>81</td>
</tr>
<tr>
<td>Kisline in baze I</td>
<td>84</td>
</tr>
<tr>
<td>Kisline in baze II</td>
<td>103</td>
</tr>
<tr>
<td>Termokemija</td>
<td>114</td>
</tr>
<tr>
<td>Elektrolitska prevodnost</td>
<td>120</td>
</tr>
<tr>
<td>Oksidacija in redukcija</td>
<td>124</td>
</tr>
<tr>
<td>Galvanski člen</td>
<td>136</td>
</tr>
<tr>
<td>Elektroliza</td>
<td>140</td>
</tr>
<tr>
<td>Kombinirane naloge</td>
<td>142</td>
</tr>
<tr>
<td>Nekatere pomembne konstante</td>
<td>153</td>
</tr>
</tbody>
</table>
UVOD

Skrivna Vaje iz splošne kemije – Zbirka nalog, ki jih jemljete v roke, so predvsem pripomoček za lažje spoprijemanje s predmetom Kemija v prvem letniku študija na Biotehniški fakulteti. Nastala so kot skupinsko delo pedagoških delavcev na Katedri za kemijo, ki je del Oddelka za živilstvo na tej fakulteti in kjer se s predmetom kemija sreča večina študentov te fakultete. Hoteli smo pripraviti pripomoček za obvladovanje tistega dela predmeta, ki se zdi nekaterim študentkam in študentom zelo težak, nekaterim pa predstavlja celo kamen spotike pri prihodu v drugi letnik, ki ga nikakor ne morejo in ne morejo preskočiti.

Tisti, ki pri sprotnem opravljanju vaj, posebno pri obračunavanju rezultatov, pisanju preglednih testov in odgovarjanju na najznačilnejša vprašanja, ki se porajajo pri praktičnem delu v laboratoriju ter predvsem pri računskem delu vaj pri predmetu, ne boste imeli težav, se lahko uporabi tega pripomočka mirno odrecete. Tisti pa, ki se vam zdi kemijsko računanje neosvojila trdnjava, boste, upamo, s temi (ne)rešenimi primeri nalog iz tematike vaj lažje in manj stresno opravili vaje in kasneje izpit.

Skrivna so zasnovana tako, da sledijo učnemu načrtu vaj in skriptam, ki so predpisana za praktični del vaj (Cveto Klofutar, Andrej Šmalc, Darja Rudan-Tasić, Laboratorijske vaje iz kemije, Ljubljana 1998), zajemajo pa le prvi semester (torej splošno in anorganske kemije). Tako kot boste praktično delali vaje, tako se nizajo tudi naloge in znotraj posamezne vaje (posamezna poglavja) so razporejene od manj zahtevnih k bolj zahtevnim. Če imate težave že z osnovnimi pojmi in izračuni, začnite znotraj vaje pri nalogi 1, če se vam zde naloge prelahke, začnite od zadnjega konca, oziroma od tistih, ki so označene z zvezdico. Ne pozabite, da opravljajo vaje na Katedri za kemijo vsaj sedem skupin študentov, ki opravljajo vaje po različnih programih. Kaj lahko se zgodi, da nekaterih vaj v kurzu, ki ste ga opravljali, niste delali (ali pa ste jih bili deležni le v zelo skrajšani obliki). Skripta so enotna za vse skupine, zato bo za večino vsaj kakšno poglavje odveč. Pazili smo, da bi bile naloge razumljive tudi za tiste, ki niso delali praktičnega dela vaj, a vselej ne gre. Če se vam zdi, da posamezna naloga preohlapno opisuje situacijo v laboratoriju, pomislite, kaj ste delali, poglejte navodila za praktično izvedbo vaje in preberite zapiske v laboratorijskem dnevniku.

Znotraj vsake vaje boste našli kup nalog in če jih boste pogledali le malo natančneje, vas bo gotovo spreletelo: »Pa se ta pedagoška sreča ne more odločiti za en sam način postavljanja vprašanj? Zakaj se okoli nekaterih na videz tako enostavnih stvari vrti kot mačka okoli vrele kaše in jo napada z vseh mogočih zornih kotov? Zakaj še nedvo to zastarjele enote in stari načini izražanja? V srednji šoli so nas vendar jasno učili, da je (npr. ekvivalent) že zdavnaj prepovedan in Ukvarjajo se z nekimi muzejskimi navideznimi problemi in arheološko pestrostjo v kemiji, ki me pa res popolnoma nič ne briga in je gotovo posledica tega, da sam nimajo pospravljenje po podstrehi!« Res so vas tako učili, res bi bilo enostavnije, če bi ne bilo treba uvajati toliko novih (in manj novih) pojmov in oznak, vendar smo se doslednemu poenotenju odpovedali predvsem zato, ker boste v praksi nujno naleteli na vse mogoče različice, ki se jih poskušajo dotakniti ta skripta. In takrat se boste morali, pač glede na problem, ki ga boste reševali in na tekst, ki bi pred vami (in ta ne bo vedno poenostavljena verzija za začetnike), pretoleči skozi gozd (praviloma zastarelih in hudo »originalnih«) oznak, poenostavljenih izračunov, kjer vas ne bo nihče opozarjal na poenostavitve in približke in življenje vam bo zagrenila še kakšna tiparska napaka za priboljšek.
Napake (pogreški), decimalke, število veljavnih (določenih) mest

Kilogram češenj na trgu ni 1 000 000 mg češenj

Pravilnost meritve tj. njeno ujemanje z resnično oz. privatno vrednostjo in natančnost meritve tj. njeno ujemanje s povprečno vrednostjo za neko skupino meritve, ki pa je lahko bolj ali manj reprezentativna (bolj ali manj pravilna) sta, če jima hočemo pogledati malo resneje pod kožo, trda oreha. Izhodišče pri vrednotenju vseh podatkov bi moralo biti, da je podatek sam po sebi brez vrednosti, če ne vemo ničesar o njegovi zanesljivosti. Trditev, da je razdalja med Ljubljano in Kamnikom 5 km je strogo vzeto lahko pravilna, če povemo, da vrednost podajamo z natančnostjo ±50 km. Pogosto bi bilo preveč nepraktično, da bi pri vsaki meritvi, vsakem izračunu in pri vsakem podatku sploh podali tudi negotovost podatka, zato v vsakdajem življenju kot v naravoslovju še posebej, marsikaj privzamemo in se razume samo po sebi. Vsi vemo, da pomeni obvestilo, da se začne abonmajski koncert ob 19:30 nekaj drugega kot dejstvo, da se je ob isti uri začel tudi TV dnevnik. Nihče niti ne opazi, če dirigenta ob 19:33 še ni na odru, če pa se ob 19:30:00 na prvem programu RTV ne bi zaslišalo: »Dober večer, ...« bi se nam zdelo zelo »slampasto«, če že ne hudo narobe. Da časa tekmovalcev v teku na 100 m ne moremo meriti z zapestno uro, je jasno vsakomur in da pomeni podatek, da tableta vsebuje 1 mg učinkovine nekaj drugega kot recept, da za boljši okus rezino avokada še izdatno popopramo, tudi. Omenjeni primeri so vzeti iz vsakdanjega življenja, vsem blizu in zato splošno razumljivi, težje pa je, kadar imamo opraviti s stvarmi, kjer smo manj doma in ne vemo dovolj o ozadju.

Zaplete se lahko že pri tako preprosti nalogi, kot je računanje množine snovi iz mase snovi. Pravilen odgovor na vprašanje: Koliko molov vode je v pol litra vode? je 28. (Pol litra vode je pol kilograma vode, mol vode je 18 g vode, 18 g v 500 g »gre«??, kje je že računalnik 500 : 18 = 27,777778 in potem je treba porezati vse decimalke.) Odgovor približno trideset je (pozor!) boljši kot 27,78. Poenostavljeno vprašanje namreč ne pove nič o temperaturi vode, torej ne poznamo natančno njene gostote in tako je nenatančen tudi izračun mase iz prostornine, nič ne vemo o tem, kako natančno je podana prostornina litra vode, gotovo se ne bomo cenzali za vsak mililiter, ampak kako natančen je potem delni rezultat 500 g, iz katerih z deljenjem z 18 dobimo končni rezultat? In še zadnji milostni strel: molska masa vode ni točno 18,000 g/mol, ampak 18,015 g/mol (če pravilno upoštevamo relativne atomske mase, kot so podane v periodnem sistemu v že omenjenih skriptah Laboratorijske vaje iz kemije in na koncu te zbirke, iz drugih periodnih sistemov bi lahko dobili tudi za malenkost drugačne vrednosti). Izračun pa:
500 g : 18,015 g/mol = 27,75 mol
500 g : 18,015 g/mol = 27,75 mol
Pa še kakšen pomislek bi se našlo!

Nasprotno pa se povsem drugače loti naslednjega izračuna: Pri sušenju 0,4567 g vzorca do konstantne mase je bila masa po sušenju 0,3425 g. Koliko molov vode je izhlapelo? Izhlapelo je (0,4567 g − 0,3425 g =) 0,1142 g vode, kar je (n = m/M, tj. 0,1142 g : 18,015 g/mol) 6,339·10⁻³ molov vode.

Računalnik ne varčuje z decimalkami, ga moramo vedno posnemati?

Gotovo se vsaj načelno vsi strinjamo z dejstvom, da nas pri rezultatu ne zanimajo neveljavna mesta, torej tista, kjer je vrednost številke na tem mestu lahko resnična ali pa tudi ne. Kupili smo npr. 10 dag sira in prav malo nam je mar, če ga je bilo v resnici 100,36 g ali 99,03 g. Splošno sprejeto pravilo je, da rezultat podamo na toliko mest (pozor: mest in ne decimalk!!), da je
nenatančna samo vrednost na zadnjem mestu. Masa 98,23 g torej pomeni, da nič ne vemo o naslednjem mestu tj. tretjem mestu za decimalno vejico (v žargonu rečemo, da miligramov pri tej natančnosti dela ne moremo določiti) in hkrati, da je tudi zadnje mesto (številka 3 negotovo). Matematično je vrednost 98,230 g enaka gornji, vendar gre za nekaj povsem drugega, saj ima prva meritev štiri, druga pa pet veljavnih mest in smo pri drugi »zgrešili« kvečjemu za miligram, pri prvi pa lahko tudi do 10 mg.

In kakšne posledice ima to v praksi?

Prvič: Meritve moramo podajati s smiselnim številom veljavnih mest. Včasih za to poskrbi že deklaracija inštrumenta, ki nas opomni, kako natančno inštrument dela, včasih imamo za to nekak zdrav čut (da po timerju pri mikrovalovni pečici ne določimo, da je trajala naša pot pot solato na vrt in nazaj 3,32 minute), včasih pa nam ne prestane drugega, kot da meritev nekajkrat na enak način ponovimo, kritično pogledamo rezultate in se odločimo koliko veljavnih mest bomo napisali pri odčitavanju (pri vajah merjenje pH, merjenje absorpcije ipd.).

Drugič: Konstante, ki jih potrebujemo za izračun, uporabimo z enim ali še bolje z dvema veljavnima mestoma več, kot jih ima meritev z največ veljavnimi mestili. Pri meritvah vsako mesto stane (vsaj čas in trud, če ne tudi uporaba aparature in material), konstante pa so praviloma podane na veliko več veljavnih mest, kot jih potrebujemo. Bodimo posebej pozorni pri relativnih atomskih masah (že opisani primer). Dvoje rešitev naloge 21 pri poglavju Splošne naloge in vprašanja jasno kaže, kako povečevanje natančnosti pri računanju molske mase ne vpliva na rezultat, če je le določenih mest pri molski masi več kot pri ostalih vrednostih v računu. Morda je najenostavnejše, da pri računanju molske mase „pobere“ vsa mesta iz periodnega sistema, in šele v rezultatu izpuštamo vsa odvečna, tj. vsa tista mesta, ki presegajo število določenih mest pri tistem številu v računu, ki ima najmanj določenih mest. Upoštevamo, da imajo nekatere vrednosti (razmerje molov v kemijski enačbi, 3 elektroni) poljubno (neskončno) število določenih mest, to pomeni, da so natančna števila.

Tretjič: Računamo z vsemi mestili v nastavljem računu in končni rezultat podamo na toliko veljavnih mest, kolikor jih ima člen z najmanj veljavnimi mestili. (Velja za množenje in deljenje, pri seštevanju in odštevanju upoštevamo člen z najmanj veljavnimi decimalnimi mestili.) Veriga drži toliko, kot drži njen najšibkejši člen in rezultat (na katerega vplivajo vse meritve in vsi delni rezultati) je dober le toliko, kolikor je dober njegov najšibkejši člen (člen, ki ima najmanj veljavnih mest). Če ne prej, je sedaj jasno, zakaj z decimalkami pri konstantah ne smemo ▼"šparati"!

Četrtič: Delne rezultate podajamo vsaj na eno mesto več "kot bi smeli", lahko pa se zaokroževanje sploh odrečemo (če nimamo ravno računalnika, ki nam vedno pokaže 12 določenih mest). Tako se izognemo manjšanju natančnosti izračuna z zaokroževanjem na večih stopnjah. Najvarnejše je peljati račun do konca z vsemi mestili in potem kritično "porezati decimalke" pri končnem rezultatu. Če je potrebno delne rezultate podati tudi vsebinsko (v odgovoru in ne le kot pomožni račun), jih seveda moramo primerno oklestiti.

Pogrešek rezultata je posledica pogreškov pri meritvah in pogreškov pri računu

In ko srečno prikrmarimo do končnega rezultata s primerimi številom veljavnih mest (mimo Scile decimalne driske in Karibde »prekratko prepisanih« konstant), bi morali dodati še tisti obvezen ±, brez katerega je rezultat tako zelo nepopoln. Delno smo tu podatek nakazali s primerimi številom veljavnih mest (задnje mesto je po definiciji nenatančno), celotna napaka pa lahko upošteva še marsikaj in lahko zajame tudi zadnji dve določeni mestili, pri nekaterih meritvah in ocenah pa lahko govorimo samo o velikostnem redu.
Uvod

O podrobnostih in praktičnih rešitvah bo nekaj napotkov pri posameznih izračunih, na tem mestu je le nekaj splošnih resnic.

Končni rezultat odraža vse napake in netočnosti pri meritvah in izračunu, zato se napaka od začetka do konca vaje vseko zamoča samo veča!

Večina računalniških programov za izračun napak je statističnih, statistika pa je znanost velikih številk in se pri (pre)majhnem številu meritev prelevi iz znanosti v zelo zavajajoč »black box«. Ta pridno bruha številke, uporabniki jih pridno prepisujejo, tečnim učiteljem je zadoščeno, številke pa seveda nimajo globljega pomena. Manj kot šest meritev je za kateri koli program premalo, trideset je že dokaj spodobno, vse vmes je kruta realnost, ki je tem bliže pravim vrednostim, čim bliže je gornji meji.

Matematične osnove izračuna napak so lahko precej nepregledne (odvodi, metoda najmanjših kvadratov, vsota kvadratov odstopanj posameznih meritev od povprečja itd., ipd.). V praksi se kar dobro znajemo z naslednjimi defnicijami in izračuni: absolutna napaka, relativna napaka, napaka vsote in razlike ter napaka zmnožka in kvocienta. Pa še metoda po zdravi pameti (za recimo serijo pet do deset meritev): tabeliramo serijo rezultatov, izračunamo povprečje, tabeliramo odstopanja od povprečja. Če so vsa odstopanja istega velikostnega reda, poiščemo največje odstopanje in ga seriji pripisemo kot napako (kot ±, ne glede na dejanski predznak). Tako smo sicer napako zaokrožili navzgor, kar pa je, posebno pri majhnih serijah, najbolj varno. Če je kakšno (posezno!!) odstopanje izrazito večje od vseh ostalih, to meritev in ta delni rezultat zanemarimo in postopek ponovimo (vendar ne tolikokrat, da bi na koncu ostali z enim rezultatom, ki bi imel seveda napako ± 0).

Nikoli izpeta pesem o ekvivalentu

Že omenjene – deloma tudi anahronistične – pestrosti smo pripustili in pustili predvsem zato, ker so del realnega stanja, s katerim se boste srečevali, pa ne samo kasneje na delovnem mestu, kjer se v marsikaterem laboratoriju prehrambeno tehnološke industrije poživrgajo na IUPAC-ova pravila in dogovore, ampak že pri prenekaterih praktičnih vajah v naslednjih letnikih. Tako smo zagrešili tudi del o zastarelih, preganjanih in nikoli pregnanih ekvivalentih. Naj vsaj pojasnimo to zastarelost, čeprav se zdi, da jo je mladeži težko opravičiti.

Zdaj že tudi zastareli Verbinčev Slovar tujk (citirano po tretji izdaji, Cankarjeva založba, 1971) pravi naslednje:

ekvivalence, -e ž [nlat. *aequivalentia* iz lat. *aequus* enak, *valere* veljati] 1. enaka vrednost; enakovrednost, 2. enaka valenca (kem.).

ekvivalent, ěnta m [gl. ekvi *valent*] 1. enaka vrednost, 2. stvar z enako vrednostjo. 3. ekonomsko blago, v katerem se izraža vrednost drugega blaga (blago, v katerem se izraža vrednost vseh vrst blaga, je splošni ekvivalent, tj. denar); **(mehanični) ekvivalent toplote** delo, enako množini toplote, potrebne, da se 1 kg vode segreje za 1 °C (fiz.); **ekvivalenten** –tna, -o enakovreden, enakovrednost.

V kemiji se (še danes) sliši za ekvivalent vsaj naslednje tri definicije (tu vir ni naveden, ker kemijijski knjigi ni v čast, da omenja ekvivalent). Mimogrede pa še tole, v ilustracijo in kot *hommage* pokojnemu profesorju Francu Lazariniju, enemu najbolj karizmatičnim in zavzetim predavateljem splošne in anorganske kemije na Univerzi v Ljubljani. Ko je ena od avtoric (M.K.) na začetku devetdesetih let prejšnjega stoletja pri pripravi prevoda knjige Kemija - splošni
priročnik spet enkrat iskala pri njem nasveta, kako naj prežene ekvivalent iz prevoda, je modro odločil: »Dajte vse, kar je v zvezi z ekvivalentom v drobni tisk, tako bo ostalo, ker je pomembno, ni pa nevarnosti, da bi kdo, posebno kdo od študentov, prebral!«

Ekvivalent prvič:
En ekvivalent (= ekvivalentna masa) elementa je tista količina elementa, ki se spaja z 1,000 g vodika oziroma (kar je isto!!!) z 8,000 g kisika. V tabeli so navedene ekvivalentne mase mangana za nekatere manganove okside.

<table>
<thead>
<tr>
<th>Ime</th>
<th>Formula</th>
<th>Masni delež mangana</th>
<th>Masni delež kisika</th>
<th>Ekvivalentna masa mangana</th>
</tr>
</thead>
<tbody>
<tr>
<td>manganov(II) oksid</td>
<td>MnO</td>
<td>0,7745</td>
<td>0,2255</td>
<td>27,48 g</td>
</tr>
<tr>
<td>manganov (III) oksid</td>
<td>Mn₂O₃</td>
<td>0,6960</td>
<td>0,3040</td>
<td>18,32 g</td>
</tr>
<tr>
<td>manganov(IV) oksid</td>
<td>MnO₂</td>
<td>0,6320</td>
<td>0,3680</td>
<td>13,74 g</td>
</tr>
</tbody>
</table>

Iz tabele je jasno razvidno, da je ekvivalentna masa mangana odvisna od spojine, za katero jo določamo (računamo), torej je ne moremo odčitati direktno iz periodnega sistema in ni ena sama, za mangan karakteristična vrednost, kot je njegova molska masa.

Ekvivalent drugič:
En ekvivalent kisline je tista količina kisline, ki lahko odda 1 mol oksonijevih (H⁺, H₃O⁺) ionov. En ekvivalent baze je tista količina baze, ki lahko sprejme 1 mol oksonijevih (H⁺, H₃O⁺) ionov; oz. po Arrheniusu: En ekvivalent baze je tista količina baze, ki lahko odda 1 mol hidroksidnih (OH⁻) ionov.

En ekvivalent HCl je torej en mol HCl, en ekvivalent H₂SO₄ je pol mola H₂SO₄ in en ekvivalent H₃PO₄ je tretjina mola H₃PO₄. Ekvivalentne mase torej ne moremo določiti direktno iz formule in iz periodnega sistema, moramo vedeti tudi, koliko protonov lahko kislina ali baza izmenja.

Ekvivalent tretjič:
En ekvivalent oksidanta je tista količina oksidanta, ki lahko sprejme 1 mol elektronov. En ekvivalent reducenta je tista količina reducenta, ki lahko odda 1 mol elektronov; oziroma: ekvivalentna masa oksidanta (reducenta) je torej molska masa oksidanta (reducenta) deljeno s spremembo oksidacijskega števila v reakciji, ki jo obravnavamo. (To seveda pomeni, da je odvisna od reakcije!!)

Nauk basni I: Z ekvivalentom so same težave, saj ni za snov značilna konstanta, ki bi jo lahko preprosto tabelirali, ampak je praviloma odvisen od reakcije in/ali (pri določenem elementu) od spojine.

In zakaj ga potem sploh enkrat za vselej ne preženemo iz kemije?
Zaradi tiste lepe lastnosti, ki nam jo pove že njegovo ime: enako sem vreden. Spomnimo se, koliko težav povzroča določitev molskega razmerja, kako moramo imeti ves čas računa v glavi kemijsko enačbo. Ravno tu pa so ekvivalenti tisto pravo: en ekvivalent vedno reagira z enim ekvivalentom, ne glede na to, da npr. trije moli reagenta A reagirajo z sedmimi moli reagenta B in je molsko razmerje 3:7 (ali 7:3, kako je že prav?). Pri tem pa je treba seveda vzeti v zakup, da
je molsko razmerje »skrito« v tistih deležih molov, ki reagirajo: sedmina mola A reagira s tretjino mola B, ampak vedno en ekvivalent z enim ekvivalentom:

\[3 \text{A} + 7 \text{B} \quad \text{ali} \quad \frac{\text{A}}{7} + \frac{\text{B}}{3} \]

Nauk basni II: Ko smo si enkrat na jasnem, s kakšno reakcijo imamo opravka in smo določili ekvivalentne mase (tako da smo enkrat za vselej upoštevali molsko razmerje), gre naprej vse kot po loju, vedno 1:1. Jasno, da bomo delali z ekvivalenti, če imamo opraviti z neko določeno reakcijo, ki jo v laboratoriju obračamo na vse mogoče načine in prilagajamo zatehtne, volumne ipd. Zato se v praksi ekvivalent pogosto drži in noče izdihniti! (Kdor ne verjame naj si pogleda izračun za peroksidno število maščob v različnih knjigah, pa ne samo tistih, ki so izšle takoj po drugi svetovni vojni in pred njo!)

Še bolj pa je res, da je bolj pregledno, pravilne in v skrajni konsekvenci enostavneje dosedno uporabljati enoto mol.

Še en manjši kažem, naj bi imela proračune lahko predstavljata vprašanje: *ima konstanta ravnovesja enote ali ne?* Načeloma so tabele ravnovesnih konstant podane brez enot, kakor tudi Tabela 3 (Vrednosti topnostnega produkta...) in Tabela 4 (Ravnovesne konstante disociacije....) v dodatku omenjenih skript za vaje (Cveto Klofutar, Andrej Šmale, Darja Rudan-Tasič, Laboratorijeske vaje iz kemije, Ljubljana 1998). Pri računanju nam enote pogosto»pridejo prav«, kot npr. pri vaji Določitev topnostnega produkta... v istih skriptah (str. 45-49). Tako je npr. logično, da je ionski produkt vode \(10^{-14}\), če pa hočemo iz njega izračunati bodisi koncentracijo oksijevih ali pa koncentracijo hidroksidnih ionov v raztopini, je dobro uporabiti enačbo z enotami, torej:

\[K_w = [\text{H}_3\text{O}^+][\text{OH}^-] = 10^{-14} \text{ mol}^2\text{dm}^{-6} \]

V zvezi s tem bi morali slediti, če bi hoteli biti vsaj približno dosledni, vsaj dve strani definicij, izpeljav in pojasnili. Kako in kaj je z aktivnostmi in (molarimi) koncentracijami, katerih posledica so potem (ne)enote pri konstantah, je v termodinamskem smislu dorečeno, namreč: Termodinamska konstanta ravnovesja je količina brez enote, saj je izražena z aktivnostmi reaktantov in produktov. Tako sta poudarili tudi recenzenti tega dela, pri čemer sta se strinja, da je dosedno uporabljanje tega pravila pri osnovnih izračunih dosedno podaljšava: »Ni čisto po predpisih, pomaga pa!«

Kakor še nihče ni bil pijan od besede vino, kot se še nihče ni na suhem flancanje, dokler se ne preizkusite pri praktičnem računu. Pa da ne bi kdo reklo, da tega ne rabi, vsakdo lahko rabi samo tisto, kar zna!

Avtorji
SPLOŠNE NALOGE IN VPRAŠANJA

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

atomska masna enota
Avogadrovo število*
elektron (masa, naboj)
izotop
mol
molska masa
nevtron (masa, naboj)
nukleon
oksidacijsko število
osnovni naboj
proton (masa, naboj)
relativna atomska masa elementa
relativna molekulska masa
sestavni delci atoma
valenca

1. Vrstno število natrija je 11, njegova relativna atomska masa je 23. Koliko nevtronov, koliko protonov in koliko elektronov je v natrijevem atomu?

Odg.: V natrijevem atomu je 12 nevtronov, 11 protonov in 11 elektronov.

2. Jedro atoma ogljika vsebuje 6 protonov, relativna atomska masa tega atoma je 12. Koliko elektronov je v elektronskem ovoju tega atoma in koliko nevtronov je v jedru?

Rezultat: 6 elektronov, 6 nevtronov

* Avogadrovo število uporabljamo s toliko veljavnimi mesti, kot je razloženo v Uvodu.
3. Jedro atoma bakra vsebuje 29 protonov. Koliko elektronov je v elektronski ovojnici bakrovega dvovalentnega kationa?

Rešitev:
Pri nevtralnem atomu je število protonov v jedru enako številu elektronov v ovojnici, kationi imajo v ovojnici manj elektronov kot protonov v jedru. Pri dvovalentnem kationu sta v ovojnici dva elektrona manj, kot je protonov v jedru.

Odg.: Elektronska ovojnica dvovalentnega bakrovega kationa vsebuje 27 elektronov.

4. Relativna atomska masa fluora je 19, njegovo vrstno število je 9. Koliko elektronov vsebuje fluoridni ion (F⁻)? Utemeljite odgovor (največ 50 besed)!

Rezultat: 10 elektronov

5. Kolikšno je masno število kalcija, če vsebuje atom kalcija 20 nevtronov in njegov dvakrat pozitivno nabit ion 18 elektronov?

Rezultat: 40

6. Masno število natrija je 23, njegovo vrstno število je 11. Koliko protonov, koliko nevtronov in koliko elektronov vsebuje natrijev kation (Na¹⁺)? Koliko natrijevih ionov vsebuje ½ mola natrijevega fosfata?

Rešitev:
Na⁺: 11 protonov
12 nevtronov
10 elektronov

½ mola Na₃PO₄ vsebuje \(\frac{3}{2} \cdot 6.02 \cdot 10^{23} = 9 \cdot 10^{23} \) Na⁺ ionov

Odg.: Na⁺ ion vsebuje 11 protonov, 12 nevtronov in 10 elektronov. Pol mola Na₃PO₄ vsebuje 9\(\cdot 10^{23} \) Na⁺ ionov.

7. V čem se razlikuje atom klorovega izotopa klor-35 od atoma klorovega izotopa klor-37?

Rešitev:
Oba atoma imata enako število protonov v jedru in enako število elektronov v elektronski ovojnici. Atom klora ima 17 protonov in 17 elektronov. Izotopi nekega elementa so na istem mestu v periodnem sistemu, imajo torej enako vrstno število (enako število protonov v jedru in elektronov v ovojnici), razlikujejo pa se po številu nevtronov v jedru. Imajo torej različno masno število. (Masno število = število protonov + število nevtronov) Kemijsko so atomi izotopov praktično enaki atomi, razlikujejo se po masi.

Odg.: V jedru atoma izotopa klor-37 sta dva nevtrona več kot v jedru atoma izotopa klor-35.

Odg.: Jedro atoma ogljikovega izotopa C-12 vsebuje 6 protonov in 6 nevtronov.

9. Uredite po naraščajoči masi naslednje molekule: \({^3}_1\text{H}^{35}\text{Cl}, {^2}_1\text{H}^{37}\text{Cl}, {^1}_1\text{H}^{37}\text{Cl}, {^3}_1\text{H}^{37}\text{Cl}, {^1}_1\text{H}^{35}\text{Cl} \)

Rezultat: \({^1}_1\text{H}^{35}\text{Cl} < {^1}_1\text{H}^{37}\text{Cl} \equiv {^3}_1\text{H}^{35}\text{Cl} < {^2}_1\text{H}^{37}\text{Cl} < {^3}_1\text{H}^{37}\text{Cl} \)

Odg.: Klor-37 je za 5,7 % težji od klora-35. Števili 35 in 37 pomenita masno število (= število nukleonov) v jedru.

11. Kateri ion ima več elektronov: Cu\(^+\) ali Cu\(^{2+}\)? Koliko več?

Rezultat: Cu\(^+\), enega več

12. Napišite formulo bakrovega(II) sulfata(VI) pentahidrata in pojasnite pomen vseh znakov (črk in številk) v formuli!

Rezultat: CuSO\(_4\) · 5 H\(_2\)O

13. Napišite formule cinkovega klorida, železovega(III) sulfata, kalijevega hidroksida, svinčevega jodida, natrijevega sulfata(VI), kalcijskega oksida in dušikovega kisline? Kaj pomenijo rimske številke v oklepajih!

Rezultat: ZnCl\(_2\); Fe\(_2\)(SO\(_4\))\(_3\); KOH; PbI\(_2\); Na\(_2\)SO\(_4\); CaO; MgCO\(_3\); HNO\(_3\)

14. Kaj so nitrati(V) in kaj nitrati(III)? Napišite formulo enega nitrata(V) in enega nitrata(III) ter spojini poimenujte!

Odg.: Nitrat(V) oz. nitrati so soli dušikove(V) kisline (HNO\(_3\)), nitrat(III) oz. nitriti so soli dušikovega(III) kisline. Primer prvih je npr. natrijev nitrat(V): NaNO\(_3\), primer drugih pa npr. aluminijev nitrat(III): Al(NO\(_3\))\(_3\).

15. Kaj so sulfati(VI) in kaj fosfati(V)? Napišite formulo enega sulfata(VI) in enega fosfata(V) ter spojini poimenujte!

Odg.: Sulfat(VI) so soli žveplove(VI) kisline (H\(_2\)SO\(_4\)), fosfat(V) so soli fosforjeve(V) kisline (H\(_3\)PO\(_4\)). Primer prvih je npr. natrijev sulfat(VI): Na\(_2\)SO\(_4\), primer drugih pa npr. kalcijski fosfat(V): Ca\(_2\)(PO\(_4\))\(_3\).
16. Kateri anion je značilen sestavni del nitratov(V)? Napišite formuli kalijevega in cinkovega nitrata!

Rezultat: \(\text{NO}_3^-; \text{KNO}_3; \text{Zn(NO}_3)_2 \)

17. Napišite formuli bakrovega(I) oksida in bakrovega(II) oksida! Kaj pomenita števili I in II v teh imenih?

Rezultat: \(\text{Cu}_2\text{O}; \text{CuO}; \) oksidacijski števili bakra

18. Formula \(\text{HNO}_3 \) pomeni dušikovo(V) kislino. Kaj pove oznaka (V) v tem imenu?

Odg.: Oznaka (V) pomeni oksidacijsko število dušika.

19. Napišite formule bakrovega(I) oksida, bakrovega(II) oksida, kalijevega nitrata, svinčevega jodida in žveplove(VI) kisline! Vsako formulo opremite z imenom spojine!

Rešitev:
\(\text{Cu}_2\text{O} \) je bakrov(I) oksid.
\(\text{CuO} \) je bakrov(II) oksid.
\(\text{KNO}_3 \) je kalijev nitrat(V).
\(\text{PbI}_2 \) je svinčev jodid.
\(\text{H}_2\text{SO}_4 \) je žveplova(VI) kislina

20. Koliko molekul vode je 1 mol vode? Koliko tehta mol vode?

Rezultat: \(6 \cdot 10^{23}; 18 \) g

21. Pri segrevanju je neka snov oddala 480 g \(\text{CO}_2 \). Koliko molov je to?

Rešitev:

a) s smiselnim številom decimalk za molsko maso, \(M \)
\[n = \frac{m}{M} = \frac{480 \text{ g}}{44,01 \text{ g/mol}} = 10,9 \text{ mol} \]
\[M(\text{CO}_2) = (12,01 + 2\times16,00) \text{ g/mol} = 44,01 \text{ g/mol} \]

Odg.: Pri segrevanju je snov oddala 10,9 mol \(\text{CO}_2 \).

b) s formalnim številom decimalk za molsko maso, \(M \) (toliko kot jih je v periodnem sistemu na koncu skripta)
\[n = \frac{m}{M} = \frac{480 \text{ g}}{44,009 \text{ g/mol}} = 10,9 \text{ mol} \]

\[M(\text{CO}_2) = (12,011 + 2 \times 15,999) \text{ g/mol} = 44,009 \text{ g/mol} \]

Odg.: Pri segrevanju je snov oddala 10,9 mol CO₂.

Nazorno je predstavljeno dejstvo, da dasta oba računa enak rezultat, saj je natančnost le-tega določena s tremi mesti pri meritvi 480 g in je upoštevanje vseh mest pri računanju molske mase brezpredmetno, če so le več kot 3 (glej tudi str. 3 odstavek Drugič!)

22. Koliko gramov tehtajo tri molekule vodika? Koliko atomskih masnih enot je to?
 Rezultat: 1,00·10⁻²³ g; 6

23. Koliko atomov kisika vsebuje 10⁻⁶ mol vode?
 Rešitev:
 10⁻⁶ mol vode (H₂O) vsebuje (10⁻⁶·6,023·10²³) molekul vode in prav toliko atomov kisika (vsaka molekula vode vsebuje en atom kisika).
 6,023·10²³ je Avogadrovo število (\(N_A\)), tj. število delcev v 1 mol.
 Odg.: 10⁻⁶ mol vode vsebuje 6·10¹⁷ atomov kisika.

24. Koliko molekul vode vsebuje 1,0·10⁻⁵ mol FeSO₄·7H₂O?
 Rešitev:
 Iz formule železovega sulfata heptahidrata je razvidno, da 1,0·10⁻⁵ mol FeSO₄·7H₂O vsebuje 7·1,0·10⁻⁵ mol H₂O, kar pomeni 7·10⁻⁵·6,023·10²³ molekul H₂O (1 mol vsebuje Avogadrovo število delcev).
 Odg.: 1,0·10⁻⁵ mol FeSO₄·7H₂O vsebuje 4,2·10¹⁹ molekul H₂O.

25. Koliko atomov kisika je v 13 g vode?
 Rešitev:
 \[n = \frac{m}{M} = \frac{N}{N_A} \]
 \[n = \frac{13 \text{ g}}{18,0148 \text{ g/mol}} = 0,722 \text{ mol} \]
 \[N = n \cdot N_A = 6,02·10^{23} \text{ mol}^{-1} \cdot 0,722 \text{ mol} = 4,3·10^{23} \text{ atomov kisika} \]
 Odg.: V 13 g vode je 4,3·10²³ atomov kisika.
26. Koliko molov ogljikovega monoksida je \(5,1 \cdot 10^{25}\) molekul CO? Koliko tehta ta množina plina?

Rešitev:
\[
\begin{align*}
N &= 5,1 \cdot 10^{25} \\
n &= \frac{N}{N_A} = \frac{5,1 \cdot 10^{25}}{6,02 \cdot 10^{23}} \Rightarrow 85 \text{ mol}
\end{align*}
\]
\[
m(CO) = n(CO) \cdot M(CO) = 85 \text{ mol} \cdot 28,01 \text{ g/mol} = 2,4 \cdot 10^3 \text{ g} = 2,4 \text{ kg}
\]

Odg.: \(5,1 \cdot 10^{25}\) molekul CO je 85 mol CO. Masa te množine CO je 2,4 kg.

27. Koliko tehta \(1,0 \cdot 10^{10}\) atomov natrija? Koliko molov je to?

Rešitev:
\[
\begin{align*}
n &= \frac{m}{M} = \frac{N}{N_A} \\
m(Na) &= \frac{N}{N_A} \cdot M = \frac{1,0 \cdot 10^{10}}{6,02 \cdot 10^{23}} \cdot 22,990 \text{ g/mol} = 3,8 \cdot 10^{-13} \text{ g}
\end{align*}
\]
\[
n(Na) = \frac{1,0 \cdot 10^{10}}{6,02 \cdot 10^{23}} = 1,7 \cdot 10^{-14} \text{ mol}
\]

Odg.: \(1,0 \cdot 10^{10}\) atomov Na tehta 3,8 \(\cdot 10^{-13}\) g; \(1,0 \cdot 10^{10}\) atomov Na je 1,7 \(\cdot 10^{-14}\) mol Na.

28. Baker tvori dva oksida CuO in Cu\(_2\)O. V katerem je masni delež kisika večji?

Rešitev:
Iz formule je razvidno, da je masni delež kisika v CuO (en atom kisika na en atom bakra) večji kot v Cu\(_2\)O (en atom kisika na dva atoma bakra).

ali računsko:
\[
w(X) = \frac{m(X)}{\sum m_i}
\]

masni odstotek kisika v CuO, \(w(O)\):
\[
w(O) = \frac{masa \text{ kisika}}{masa \text{ oksida}} \cdot 100 \% = \frac{16,00 \text{ g}}{63,54 \text{ g} + 16,00 \text{ g}} \cdot 100 \% = 20,12 \%
\]

masni odstotek kisika v Cu\(_2\)O, \(w(O)\):
\[
w(O) = \frac{masa \text{ kisika}}{masa \text{ oksida}} \cdot 100 \% = \frac{16,00 \text{ g}}{2 \cdot 63,54 \text{ g} + 16,00 \text{ g}} \cdot 100 \% = 11,18 \%
\]
Masne deleže pogosto izražamo v odstotkih in zato zasledite tudi izraz masni odstotek, včasih pa boste zasledili še starejši izraz utežni procent.

Odg.: Masni delež kisika je v CuO večji kot v Cu₂O.

29. Katera je najenostavnejša spojina, ki vsebuje 37,5 % C, 12,5 % H in 50,0 % O?

Rešitev:
V 100 g spojine je 37,5 g C, 12,5 g H in 50,0 g O. S pomočjo množinskega razmerja določimo enostavno formulo spojine:

\[
\frac{C}{H}:O = \frac{37,5}{12,011} : \frac{12,5}{1,0079} : \frac{50,0}{15,999} = 3,122 : 12,4 : 3,125 = 1:4:1
\]
Enostavna formula spojine je CH₄O.

Odg.: Najenostavnejša spojina z omenjeno sestavo je metanol (CH₃OH).

30. 9,94 g spojine vsebuje 2,60 g dušika, 0,74 g vodika, 6,60 g klora. Kakšna je formula spojine?

Rešitev:

\[
n(N) : n(H) : n(Cl) = \frac{m(N)}{M(N)} : \frac{m(H)}{M(H)} : \frac{m(Cl)}{M(Cl)} =
\]

\[
= \frac{2,60 g}{14,007 g/mol} : \frac{0,74 g}{1,0079 g/mol} : \frac{6,60 g}{35,453 g/mol}
\]

\[
= 0,1856 mol : 0,734 mol : 0,1862 mol = 1,00 : 3,95 : 1,00 = 1 : 4 : 1
\]

Odg.: Formula spojine je NH₄Cl (amonijev klorid).

31. Kolikšen je utežni % bakra v bakrovem(II) kloridu in kolikšen je v bakrovem(II) sulfatu(VI) pentahidratu?

Rešitev:

primer za CuCl₂

\[
M_r(CuCl_2) = 2 \cdot 35,453 + 63,546 = 134,452
\]

\[
w(Cu) = \frac{63,556}{134,452} \cdot 100 \% = 47,27 \%
\]

primer za CuSO₄ · 5 H₂O

\[
M_r(CuSO_4 \cdot 5 H_2O) = 63,546 + 32,066 + 9 \cdot 15,999 + 10 \cdot 1,0079 = 249,682
\]

\[
w(Cu) = \frac{63,546}{249,682} \cdot 100 \% = 25,45 \%
\]

Odg.: Utežni (= masni) odstotek bakra v bakrovem(II) kloridu je 47,27 %, v bakrovem(II) sulfatu(VI) pentahidratu pa 25,45 %.
32. V zmesi vodika in dušika je molski delež N₂ 0,30. Izračunajte masni delež N₂ in H₂ v zmesi!

Rešitev:
Molski delež snovi Y:
\[x(Y) = \frac{n(Y)}{\sum n_i}; \quad \sum x_i = 1 \]

Če je molski delež N₂ v zmesi 0,30, potem je molski delež H₂ v zmesi 0,70 (= 1 – 0,30). To pomeni, da 1 mol zmesi vsebuje 0,30 mol N₂ in 0,70 mol H₂.

0,30 mol N₂ je 28,014 g/mol · 0,30 mol = 8,40 g
0,70 mol H₂ je 2,0158 g/mol · 0,70 mol = 1,41 g

masa zmesi je:
\[m_{zmesi} = m_{H_2} + m_{N_2} \quad \text{v} \quad 9,81 \text{ g zmesi je} \quad 8,40 \text{ g N}_2 \text{ in} \quad 1,41 \text{ g H}_2 \]

masni delež N₂ je \(\frac{8,40 \text{ g}}{9,81 \text{ g}} \cdot 100 \% = 86 \% \)

masni delež H₂ je \(\frac{1,41 \text{ g}}{9,81 \text{ g}} \cdot 100 \% = 14 \% \) oz. 100 % – 86 % = 14 %

Odg.: Masni delež N₂ je 86 %, masni delež H₂ je 14 %.

33. 3,01 g kadmijevega oksida vsebuje 2,81 g kadmija. Izračunajte enostavno formulo oksida in njegovo masno odstotno sestavo!

Rešitev:
\[m(oksida) = m(Cd) + m(O) \Rightarrow m(O) = m(oksida) – m(Cd) = 3,01 \text{ g} – 2,81 \text{ g} = 0,20 \text{ g} \]

\[n(Cd) : n(O) = \frac{m(Cd)}{M(Cd)} : \frac{m(O)}{M(O)} = \]

\[= \frac{2,81 \text{ g}}{112,41 \text{ g/mol}} : \frac{0,20 \text{ g}}{15,999 \text{ g/mol}} = 0,02500 \text{ mol} : 0,0125 \text{ mol} = 2 : 1 \]

\[w(Cd) = \frac{2,81 \text{ g}}{3,01 \text{ g}} \cdot 100 \% = 93,4 \% \]

\[w(O) = \frac{0,20 \text{ g}}{3,01 \text{ g}} \cdot 100 \% = 6,6 \% \]

Odg.: Enostavna formula kadmijevega oksida je Cd₂O, vsebuje pa 93,4 masnih % kadmija in 6,6 masnih % kisika.

34. Če 3,10 g fosforja zgori na zraku, nastane 7,10 g fosforjevega(V) oksida. Izračunajte utežno razmerje P : O v P₂O₅!

Rešitev:
\[4 \text{P} + 5 \text{O}_2 \rightarrow 2 \text{P}_2\text{O}_5 \]
Zakon o ohranitvi mase: $\sum m(reaktanti) = \sum m(produkti)$

3,10 g $+ x$ g $= 7,10$ g $x = 4,00$ g (3,10 g fosforja reagira s 4,00 g kisika in nastane 7,10 g fosforjevega oksida.)

P : O $= 3,10$ g : 4,00 g $= 31:40 = 0,775 : 1$

Odg.: Utežno razmerje P : O v P$_2$O$_5$ je 31 : 40 oz. 0,775 : 1,00.

35. Napišite, katere enote ustrezajo posamezni fizikalni količini!

- enota za maso = ___________
- enota za volumen = __________
- enota za molsko maso = __________
- enota za masni delež = __________
- enota za molarno (množinsko) koncentracijo = __________
- enota za masno koncentracijo = __________

Rezultat: kg, g; cm3, dm3, m3, L, mL; g/mol; brez enot; mol/L; g/L; mol/kg

36. Dopolnite manjkajoča mesta!

10 mL $=$ __________ cm3 $=$ __________ dm3 $=$ __________ L
5×10^{-2} g $=$ __________ mg $=$ __________ kg
$0,9$ g/cm3 $=$ __________ g/dm3 $=$ __________ kg/dm3
2×10^{-2} g/cm3 $=$ __________ mol/L (za vodno raztopino NaCl; M $= 58,443$ g/mol)*
298 K $=$ __________ °C
27 °C $=$ __________ K
121 kPa $=$ __________ atm
700 mmHg $=$ __________ Pa

Rezultat: 10, 10×10^{-3}, 10×10^{-3}; 5×10^{1}, 5×10^{-5}; $0,9 \times 10^{3}$, 0,9; 0,3; 25; 300; 1,19; 933$\times 10^{4}$

37. Zatehtali smo 10 g neke snovi z relativno natančnostjo 0,1 %. Koliko decimalk je določenih pri taki zatehti, če jo napišemo v g? Odgovor utemelji računsko!

Rešitev:

0,1 % od 10 g je 0,01 g

Odg.: Zatehtali smo torej z natančnostjo ± 0,01 g, kar pomeni na „dve decimalki natančno” pri zatehti v gramih (= določeni sta dve decimalki pri zatehti v gramih).

* Glej poglavje Raztopine.
38. Na tehtnici, kjer lahko določamo maso na ± 0,01 g, stehtamo najprej maso 1 g, nato pa maso 1,5 g. Katero maso smo določili z večjo relativno napako? Utemeljite odgovor!

Rešitev:
rel. napaka \(\frac{\Delta m}{m} \)
rel. napaka za maso 1 g je \(\frac{0,01 g}{1 g} = 1 \% \);
rel. napaka za maso 1,5 g je \(\frac{0,01 g}{1,5 g} = 0,7 \% \)

Odg.: Z večjo relativno napako smo določili prvo maso (0,01 > 0,007).

39. V koliko letih bi prešteli vse atome v milijoninki mola vodika \((H_2) \), če bi pri štetju sodelovala ena milijarda ljudi in bi vsakdo preštel vsako sekundo po en atom?

Rešitev:
Štejemo \(10^{-6} \) mola tj. \(6,02 \cdot 10^{17} \) molekul \(H_2 \) oz. \(12,0 \cdot 10^{17} \) atomov H.

1 leto je 365 dni = 8760 ur = 525600 min = 31536000 s

\[
\frac{12 \cdot 10^{17}}{31536 \cdot 10^9} = 38 \text{ let}
\]

Odg.: Štetje bi potekalo 38 let (prestopna leta lahko zanemarimo).

40. Napišite formule petih spojin in jih poimenujte!

41. Kateri konstanti morate poznati, če hočete izračunati maso vodikovega atoma?

Rezultat: \(N_A \), realitvno atomsko maso vodika

42. Vstavite pravilen znak, < ali >:

\[
\begin{align*}
1 \text{ cm}^3 & \underline{<} 1 \text{ dm}^3 \\
1 \text{ g/cm}^3 & \underline{>} 1 \text{ kg/m}^3 \\
1 \text{ mol/dm}^3 & \underline{<} 1 \text{ mol/cm}^3
\end{align*}
\]

Rezultat: <; >; <

43. Napišite pretvornike med enotami:

\[
\begin{align*}
\mu g & \text{ in g} \\
g/cm^3 & \text{ in g/dm}^3 \\
kg & \text{ in g}
\end{align*}
\]
g/mL in kg/m³
mmol in mol
mmol/L in mmol/cm³

Rezultat.: 10⁻⁶; 10³; 10³; 10⁻³; 10⁻³

44. Naslednja števila zapišite na:
 a) tri veljavne številke 0,00172835
 b) pet veljavnih številk 1352735
 c) dve veljavni številki 0,00100000

 Rezultat: a) 0,00173 ali 1,73 × 10⁻³; b) 1352700 ali 1,3527 × 10⁶; c) 0,0010 ali 1,0 × 10⁻³

45. Določi število veljavnih številk naslednjim meritvam:
 a) 1,23 g
 b) 0,00123 g
 c) 2,0 g
 d) 100 g

 Rezultat: a) 3; b) 3; c) 2; d) nedoločeno*

46. Izračunaj in rezultat podaj s pravilnim številom veljavnih števik:
 a) 1,68·7,847
 b) \(n(O) = \frac{3,10 g}{15,999 g/mol} \)
 c) \(\rho = \frac{2,1 g}{2,05 L} \)
 d) \(M_r(CO_2) = 1×12,011 + 2×16,0 \)

 Rezultat: a) 13,2; b) 0,194 mol; c) 1,0 g/L; d) 44,0

47. Če zgori 3,10 g fosforja na zraku, nastane 7,10 g fosforjevega oksida. Določite ekvivalent fosforja v oksidu!

 Rešitev:
 En ekvivalent elementa je tista količina elementa, ki se spaja z 1,008 g vodika oziroma z 8,000 g kisika (glej Uvod str. 4-6).

 3,10 g fosforja + 4,00 g kisika → 7,10 g fosforjevega oksida
 Če 3,10 g fosforja reagira s 4,00 g kisika, potem z 8,000 g kisika reagira
 \(\frac{3,10 g \cdot 8,000 g}{4,00 g} = 6,20 g \) fosforja

Odг.: Ekvivalentna masa fosforja v fosforjevem oksidu je 6,20 g.

48. Manganovi oksiди vsebujejo 77,5 %, 69,6 % in 49,6 % mangana. Določite ekvivalentne mase mangana v vseh treh oksidih!

Rešitev:
Prvi oksid:
če 77,5 g Mn reagira z 22,5 g kisika, potem z 8,000 g kisika reagira
\[
\frac{8,000 \times 77,5}{22,5} = 27,6 \text{ g Mn.}
\]

Drugi oksid:
če 69,6 g Mn reagira s 30,4 g kisika, potem z 8,000 g kisika reagira
\[
\frac{8,000 \times 69,9}{30,4} = 18,4 \text{ g Mn.}
\]

Tretji oksid:
če 49,6 g Mn reagira s 50,4 g kisika, potem z 8,000 g kisika reagira
\[
\frac{8,000 \times 49,6}{50,4} = 7,87 \text{ g Mn.}
\]

Odг.: Ekvivalentna masa mangana v prvem oksidu (77,5 % Mn) je 27,6 g, v drugem oksidu (69,9 % Mn) 18,4 g in v tretjem oksidu (49,6 % Mn) 7,87 g.
GOSTOTA TRDNIH SNOVI IN TEKOČIN

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

gostota
relativna napaka
absolutna napaka
grafična predstavitev odvisnosti dveh spremenljivk (osi, enote, velikost enote na grafu)
odsek premice na ordinatni osi
naklon premice (smerni koeficent)

za naloge 21, 22, 23, 24, 25 tudi osnove o izražanju sestave raztopine in njihovem
preračunavanju (vaja Raztopine)

Splošne naloge

1. Kolikšna je gostota stekla, če 11 kroglic, ki tehtajo 183,7 g, izpodrini 0,000069 m3 vode?
 Rezultat v g/cm3 podaj na ustrezno število zanesljivih mest!

 Rešitev:
 Gostota je masa prostorninske enote določene snovi, kar lahko zapišemo z naslednjo
enačbo:

 \[\rho = \frac{m}{V} \]

 ker je \(\rho \) simbol za gostoto, \(m \) za maso in \(V \) za volumen.

 \[\rho = \frac{183,7 \text{ g}}{0,000069 \times 10^{-3} \text{ cm}^3} = 2,662 \text{ g/cm}^3 \]

 Pri določanju zanesljivih mest rezultata upoštevamo pravilo za množenje ali deljenje, to je,
 da rezultat podamo na toliko mest kot jih ima število v računu z najmanj zanesljivimi
 mesti. Najmanj zanesljivih mest ima podatek za volumen (0,000069 m3 ali 6,9×10$^{-5}$ m3,
 dve zanesljivi mesti), zato tudi rezultat podamo na dve zanesljivi mesti.

 Gostota stekla je 2,7 g/cm3.

2. Koliko bi tehtala kocka zlata s stranico 17 m, če je gostota zlata 18 g/cm3?
Rezultat: 8,8×10^4 ton

3. Kakšen volumen svinca z gostoto 11,3 g/cm^3 ima enako maso kot 100 cm^3 velik lesa z gostoto 0,38 g/cm^3?
 Rezultat: 3,4 cm^3

4. Kolik je volumen 150 g snovi z gostoto 2,0 g·dm^−3? Za koliko se bo ta volumen spremenil, če zvišamo temperaturo in se gostota spremeni na 1,5 g·dm^−3?
 Rezultat: 75 dm^3; za 25 dm^3

5. Pri 20 °C tehta 20 ml tekočine 30 g. Koliko tehta 20 ml tekočine pri 50 °C, ko je gostota manjša za 10 %?
 Rezultat: 27 g

6. Posoda drži 500 g vode pri 20 °C. V isto posodo lahko nalijemo 786 g žveplove(VI) kisline. Izračunaj gostoto te kisline, če veš, da je gostota vode pri tej temperaturi 0,99823 g/mL.
 Rezultat: 1,57 g/mL

7. Kaj pomeni oznaka \(d_{20}^4 = 1,0054 \)?
 Glej Laboratorijske vaje iz kemije, stran 9.

Absolutna in relativna napaka (pogrešek) pri določanju gostote

8. Kakšno enoto ima absolutna napaka in kakšno relativna napaka pri podajanju rezultata za meritve gostote snovi? Napiši en primer zapisa z absolutno in en primer zapisa z relativno napako!
 Rezultat: g/cm^3; brez enote; (1,01 ± 0,02) g/cm^3; 2,05 g/cm^3 (1 ± 3%) ali 2,05 g/cm^3 (1 ± 0,03)

9. Pri določanju gostote trdne snovi s potapljanjem smo izmerili naslednje vrednosti: maso vzorca (\(m = 18,15 \text{ g} ± 0,01 \text{ g} \)), volumen tekočine v merilnem valju pred potapljanjem vzorca (\(V_1 = 10,0 \text{ cm}^3 \)), skupni volumen po potapljanju vzorca v tekočino v merilnem valju (\(V_2 = 17,5 \text{ cm}^3 \)). Pri vsakokratnem odcitavanju volumena naredimo napako ± 0,1 cm^3. Izračunajte gostoto vzorca ter absolutno in relativno napako meritve!
Rešitev:
Za izračun gostote uporabimo dve formuli, prvo za izračun volumna vzorca in drugo za izračun gostote vzorca

\[V = V_2 - V_1 = 17,5 \text{ cm}^3 - 10,0 \text{ cm}^3 = 7,5 \text{ cm}^3 \]

\[\rho = \frac{m}{V} = \frac{18,15 \text{ g}}{7,5 \text{ cm}^3} = 2,42 \text{ g/cm}^3 \]

Napake podajamo na dva načina: kot absolutno napako (ima enako enoto kot količina, ki ji določamo napako) in kot relativno napako (brez enote, pogosto v procentih).

Pravila za računanje z napakami izvirajo iz odvajanja formul za izračun želene količine. Pri izračunu upoštevamo, da ima napaka predznak ±; napake vedno seštevamo ne glede na morebiten negativni predznak, do katerega pride pri odvajanju. Pri izračunu volumna nastopa operacija odštevanja. (Napako pa se enako izračuna tudi pri operaciji seštevanja.) Absolutna napaka določitve volumna vzorca je vsota absolutnih napak obeh meritev volumnov, vode in skupnega volumna vode in vzorca:

\[\Delta V = \Delta V_2 + \Delta V_1 = 0,1 \text{ cm}^3 + 0,1 \text{ cm}^3 = 0,2 \text{ cm}^3 \]

Obrazec za izračun napake količine, ki jo izračunamo z deljenjem ali množenjem različnih izmerjenih količin je: relativna napaka izračunane količine je vsota relativnih napak izmerjenih količin.

Pri izračunu gostote pa nastopa operacija deljenja. Relativna napaka določitve gostote vzorca je enaka vsoti relativnih napak mase in relativne napake volumna. Relativno napako pri določanju mase in volumna izračunamo tako, da absolutno napako meritev delimo z vrednostjo meritve:

\[\frac{\Delta m}{m} = \frac{0,01 \text{ g}}{18,15 \text{ g}} = 0,000551 \]

\[\frac{\Delta V}{V} = \frac{0,2 \text{ cm}^3}{7,5 \text{ cm}^3} = 0,02667 \]

\[\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{\Delta V}{V} = 0,000551 + 0,0267 = 0,0272 \]

\[\Delta \rho = \left(\frac{\Delta \rho}{\rho} \right) \cdot \rho = 0,0272 \cdot 2,42 \text{ g/cm}^3 = 0,066 \text{ g/cm}^3 \]

Pri rezultatu napišemo toliko številk, da je zadnja številka tista, ki zaradi napake meritve ni več zanesljiva. Relativno in absolutno napako pa podajamo na eno veljavno številko, saj ena številka že zadošča za določitev zanesljivih mest rezultata.

Odg.: Gostota vzorca je 2,42 g/cm³, absolutna napaka določitve je 0,07 g/cm³, relativna napaka določitve je 3 %.
10. Pri določanju gostote smo določili maso \(m = 19,35 \text{ g} \pm 0,01 \text{ g} \) in volumen \(V = 13,5 \text{ cm}^3 \pm 0,2 \text{ cm}^3 \). Računsko pokažite, da je za večjo natančnost rezultata (to je gostote) smiselno povečati natančnost določitve volumna in ne tehtati na natančnejši tehtnici!

Rešitev:

\[
\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + \frac{\Delta V}{V} = 0,00052 + 0,0148
\]

Odg.: Relativna napaka pri merjenju volumena je 30-krat večja od relativne napake pri merjenju mase, torej je napaka pri tehtanju le 3 % napake pri merjenju volumena.

11. Pri določanju gostote izmerimo maso in volumen vzorca. Masa je \(1,3075 \pm 0,0001 \text{ g} \), volumen pa \(10,3 \pm 0,1 \text{ mL} \). Katera od meritev prispeva več k napaki pri določanju gostote? Utemeljite odgovor!

Rezultat: volumen

12. Pri določanju gostote stekla pri \(20 \degree \text{C} \) so določili maso, \(m = (81,10 \pm 0,01) \text{ g} \) in volumen, \(V = (30,1 \pm 0,2) \text{ cm}^3 \). Izračunajte gostoto stekla ter absolutno in relativno napako!

Rezultat: \(2,69 \text{ g/cm}^3 \), \(0,02 \text{ g/cm}^3 \), \(0,7 \% \)

Določanje gostote trdnih snovi in raztopin iz večjega števila meritev

13. Pri določanju gostote steklenih kroglic smo dobili naslednje eksperimentalne rezultate:

<table>
<thead>
<tr>
<th>Tabela: Meritve mase stekla in volumena stekla</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m \text{ [g]})</td>
</tr>
<tr>
<td>(V \text{ [cm}^3]</td>
</tr>
</tbody>
</table>

a) Izračunaj gostoto steklenih kroglic iz danih eksperimentalnih podatkov!

b) Izračunaj povprečno gostoto ter s pomočjo izračune standardne deviacije* absolutno in relativno napako meritve!

c) Nariši graf: masa \(m \) v odvisnosti od prostornine \(V \) in grafično določi gostoto steklenih kroglic!

* Standardna deviacija se praviloma določa pri dovolj velikem številu meritve (vsaj 10).
Rešitev:
Tabela: Masa, volumen in gostota stekla ter razlika in kvadrat razlike posamezne vrednosti gostote in povprečne vrednosti gostote stekla

<table>
<thead>
<tr>
<th>m [g]</th>
<th>V [cm³]</th>
<th>(\rho_i) [g/cm³]</th>
<th>((\bar{\rho} - \rho_i)) [g/cm³]</th>
<th>((\bar{\rho} - \rho_i)^2) [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,9</td>
<td>2,6</td>
<td>3,04</td>
<td>0,10</td>
<td>0,01</td>
</tr>
<tr>
<td>15,2</td>
<td>5,3</td>
<td>2,87</td>
<td>0,27</td>
<td>0,0729</td>
</tr>
<tr>
<td>22,3</td>
<td>6,4</td>
<td>3,48</td>
<td>-0,34</td>
<td>0,1156</td>
</tr>
<tr>
<td>30,7</td>
<td>9,7</td>
<td>3,16</td>
<td>-0,02</td>
<td>0,0004</td>
</tr>
</tbody>
</table>

Če boste posamezne (delne) rezultate za gostoto stekla upoštevali z večjim številom decimalk, bodo vrednosti \((\bar{\rho} - \rho_i)\) in \((\bar{\rho} - \rho_i)^2\) lahko precej drugačne, rezultat pa \(\Delta\rho\) (ki je vsebinsko \(\pm 0,3\) g/cm³, kot je razvidno iz odgovora) ostane enak!

Povprečna vrednost gostote, \(\bar{\rho}\) je vsota posameznih vrednosti gostote, \(\rho_i\), deljeno s številom meritev, \(n\):

\[
\bar{\rho} = \frac{\sum_{i=1}^{n} \rho_i}{n} = \frac{(3,04 + 2,87 + 3,48 + 3,16) \text{g/cm}^3}{4} = 3,14 \text{g/cm}^3
\]

Kvadrat srednjega pogreška ali standardne deviacije je vsota kvadratov razlik posamezne vrednosti in povprečne vrednosti gostote, \((\bar{\rho} - \rho_i)^2\) deljeno z \((n - 1)\). Ta način izračuna pogreška se uporablja pri majhnem številu meritev.

\[
\Delta\rho = \pm \sqrt{\frac{\sum_{i=1}^{n} (\bar{\rho} - \rho_i)^2}{n - 1}} = \pm \sqrt{\frac{0,0101 + 0,0729 + 0,1156 + 0,0004}{3}} \text{(g/cm}^3)^2 = \pm 0,26 \text{g/cm}^3
\]

Graf: Odvisnost mase stekla od volumena stekla
Grafična rešitev:
Iz grafa odčitamo koordinate dveh točk, ki ležita na premici in praviloma nista meritvi, npr. $T_1 (4,4 \text{ cm}^3, 14,0 \text{ g})$ in $T_2 (8,8 \text{ cm}^3, 28,0 \text{ g})$. Iz koordinat teh dveh točk izračunamo naklon premice, to je gostoto stekla:

$$\rho = \frac{m_2 - m_1}{V_2 - V_1} = \frac{(28,0 - 14,0) \text{ g}}{(8,8 - 4,4) \text{ cm}^3} = 3,18 \text{ g/cm}^3$$

Odgovor: Gostota stekla pri posameznih meritvah je 3,04 g/cm3, 2,87 g/cm3, 3,48 g/cm3 in 3,16 g/cm3, povprečna gostota stekla je 3,1 g/cm3, absolutna napaka 0,3 g/cm3, relativna napaka 8 % in grafično določena gostota 3,2 g/cm3.

14. Pri določanju gostote svinca smo meritve zbrali v naslednji tabeli:

<table>
<thead>
<tr>
<th>m/g</th>
<th>V/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>56,31</td>
<td>5,0</td>
</tr>
<tr>
<td>135,72</td>
<td>12,0</td>
</tr>
<tr>
<td>115,95</td>
<td>10,5</td>
</tr>
<tr>
<td>90,35</td>
<td>8,0</td>
</tr>
<tr>
<td>179,21</td>
<td>15,5</td>
</tr>
</tbody>
</table>

Izračunajte povprečno gostoto svinca, ocenite pogrešek in ga pri rezultatu podajte kot relativno in kot absolutno napako! Pri računanju ne zanemarite nobene meritve. Pazite, na koliko mest smete podati rezultat! Narišite tudi ustrezen graf in določite gostoto s pomočjo tega grafa!

Pomoč:
Ocenitev pogreška ali napake je postopek, ki ga uporabimo, kadar imamo na voljo le malo meritev ali pa določitve pogreška posebej ne poudarjamo. Postopek ni natančnejši, kot je določevanje zanesljivih mest v rezultatu. Pogrešek gostote ocenimo tako, da pogledamo, koliko odstopata največja in najmanjša vrednost izračunane gostote v tabeli od povprečne vrednosti gostote. Absolutno vrednost večje od teh dveh vrednosti izberemo za ocenjeni absolutni pogrešek določitve gostote.

Rezultat: $11,3 \text{ g/cm}^3 \pm 0,3 \text{ g/cm}^3$, $11,3 \text{ g/cm}^3 (1 \pm 0,02)$
15. Pri določanju gostote bakra smo stehtanim bakrenim kroglicam določali prostornino s potapljanjem in dobili naslednje meritve:

<table>
<thead>
<tr>
<th>m/g</th>
<th>V/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>45,21</td>
<td>5,0</td>
</tr>
<tr>
<td>109,11</td>
<td>12,0</td>
</tr>
<tr>
<td>93,87</td>
<td>10,5</td>
</tr>
<tr>
<td>71,73</td>
<td>8,0</td>
</tr>
<tr>
<td>140,15</td>
<td>15,5</td>
</tr>
</tbody>
</table>

Izračunajte povprečno gostoto bakra in srednji pogrešek (standardno deviacijo)* gostote ter rezultat podajte z zapisom za relativno in zaabsolutno napako! Pri računanju ne zanemarite nobene meritve. Pazite, na koliko mest smete podati rezultat!

Rezultat: 9,02 g/cm³ ± 0,06 g/cm³; 9,02 g/cm³ (1 ± 0,7 %)

16. Opišite določanje gostote iz diagrama, ki predstavlja odvisnost mase od prostornine!

17. Kaj si predstavljaš pod "grafičnim" določevanjem gostote trdnemu vzorcu? V čem je prednost oziroma pomanjkljivost takega načina določevanja gostote?

18. Ali bi lahko gostoto sladkorja določili na enak način kot smo na vajah določili gostoto steklenih kroglic (s potapljanjem stehtanega vzorca v vodo)? Utemeljite odgovor!

Pomoč: Kako interagirata kovina ali steklo z vodo pri merjenju gostote trdne snovi? Kaj pa sladkor?

19. Ali bi lahko gostoto lesa določili na enak način kot smo na vajah določili gostoto steklenih kroglic (s potapljanjem stehtanega vzorca v vodo)? Utemeljite odgovor!

Pomoč: Kakšna je gostota stekla ali kovine v primerjavi z gostoto vode? Kaj pa gostota lesa?

20. Pri določanju gostot različnih raztopin NaCl smo dobili naslednje experimentalne podatke:

<table>
<thead>
<tr>
<th>w [%]</th>
<th>4,0</th>
<th>8,0</th>
<th>16</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>m [g]</td>
<td>11,6</td>
<td>25,2</td>
<td>18,0</td>
<td>5,5</td>
</tr>
<tr>
<td>V [cm³]</td>
<td>11,5</td>
<td>24,2</td>
<td>16,4</td>
<td>5,2</td>
</tr>
<tr>
<td>ρ [g/cm³]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Izračunajte gostote posameznih raztopin iz danih eksperimentalnih podatkov! Rezultate podajte tako natančno, kot to omogočajo meritve mase in prostornine!

* Opomba str. 22.
Narišite graf: gostota v odvisnosti od koncentracije raztopin in grafično določite koncentracijo neznanega vzorca! Na grafu obvezno označite, kako ste odčitali koncentracijo neznanega vzorca!

Rezultat: 1,01 g/cm3; 1,04 g/cm3; 1,10 g/cm3; $\rho_x = 1,06$ g/cm3; $w_x = 10,5\%$

21. S pomočjo podatkov iz tabele, kjer je podana odvisnost gostote vodne raztopine ocetne kisline, ρ, od koncentracije ocetne kisline, c, ter ustreznega grafa, določite koncentracijo ocetne kisline, ko je gostota omenjene raztopine 1,001 g·cm$^{-3}$? Na grafu pokažite tudi, koliko znaša gostota topila!

Tabela: Odvisnost gostote vodne raztopine ocetne kisline, ρ, od koncentracije ocetne kisline, c, pri temperaturi 20 $^\circ$C.

<table>
<thead>
<tr>
<th>c/(mol·dm$^{-3}$)</th>
<th>ρ/(g·cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,083</td>
<td>0,999</td>
</tr>
<tr>
<td>0,215</td>
<td>1,000</td>
</tr>
<tr>
<td>0,465</td>
<td>1,002</td>
</tr>
<tr>
<td>0,585</td>
<td>1,003</td>
</tr>
</tbody>
</table>

Rezultat: 0,340 mol·dm$^{-3}$; 0,998 g·cm$^{-3}$

*22. Kolikšna je molarna koncentracija raztopine natrijevega klorida, če je gostota raztopine 1,045 g·cm$^{-3}$ in velja naslednja odvisnost gostote vodnih raztopin od molalnosti:

Tabela: Odvisnost gostote raztopine natrijevega klorida, ρ, od molalnosti, m

<table>
<thead>
<tr>
<th>m/(mol·kg$^{-1}$)</th>
<th>ρ/(g·cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,250</td>
<td>1,007</td>
</tr>
<tr>
<td>0,500</td>
<td>1,017</td>
</tr>
<tr>
<td>0,750</td>
<td>1,027</td>
</tr>
<tr>
<td>1,000</td>
<td>1,036</td>
</tr>
<tr>
<td>2,000</td>
<td>1,072</td>
</tr>
</tbody>
</table>

Izražanje sestave raztopine in preračunavanje iz molalnosti v molarnost si oglejte pri vaji Raztopine.

Rezultat: 1,26 mol·kg$^{-1}$; 1,23 mol·dm$^{-3}$

*23. Pri določanju gostote raztopin NaCl različnih koncentracij smo pripravili umeritveno krivuljo, gostota (v g/cm3) v odvisnosti od masnega deleža NaCl. Naklon umeritvene krivulje je bil 0,91 g/cm3, gostota topila pa 1,01 g/cm3.

a) Narišite graf, ki podaja odvisnost gostote raztopin NaCl v območju masnega deleža od 0,00 do 0,20!

b) S pomočjo naklona umeritvene krivulje izračunajte gostoto raztopine NaCl z masnim deležem 0,15! Izračun preverite na grafu!

c) Kolikšna je molarna koncentracija raztopine z masnim deležem NaCl 0,15?
Rešitev:
V zgornjih nalogah ste gotovo opazili, da je odvisnost gostote raztopin od njihove sestave (masnega deleža, molarnosti...) v omejenem koncentracijskem območju, linearna.

Graf: Odvisnost gostote raztopine od masnega deleža

Premico v grafu lahko opišemo z enačbo:

$$\rho = \rho_0 + k \cdot w$$

kjer je ρ gostota raztopine, ρ_0 odsek premice ali gostota topila, k naklon premice ali sprememba gostote raztopine zaradi spremembe masnega deleža topljenca, in w masni delež topljenca v raztopini.

$$\rho = 1,01 \text{ g/cm}^3 + 0,91 \text{ g/cm}^3 \cdot 0,15 = 1,15 \text{ g/cm}^3$$

Izračunana vrednost gostote (1,15 g/cm3) je znotraj eksperimentane napake enaka vrednosti gostote odčitane na grafu!

Izražanje sestave raztopine in preračunavanje iz masnega deleža v molarnost si oglejte pri vaji Raztopine.

Rezultat: b) 1,15 g/cm3; c) 1,15 g/cm3; 3,0 mol/dm3

*24. Kolikšna sta molarna koncentracija in masni delež natrijevega klorida v raztopini, če je sprememba gostote raztopine natrijevega klorida na enoto spremembe molarne koncentracije raztopine natrijevega klorida (naklon premice) 39,6 g·mol$^{-1}$. Gostota raztopine je 1,0363 g·cm$^{-3}$, gostota vode pa 0,9973 g·cm$^{-3}$?

Izražanje sestave raztopine in preračunavanje iz masnega deleža v molarnost si oglejte pri vaji Raztopine.

Rezultat: 0,985 mol·dm$^{-3}$; 5,55 %
*25. Kolikšen je masni delež etanola (C\textsubscript{2}H\textsubscript{5}OH) v raztopini, če je sprememba gostote raztopin etanola na enoto spremembe molarne koncentracije etanola (naklon premice) \(-1,44\ \text{g-mol}^{-1}\) ter je gostota raztopine 0,9963 g·cm\(^{-3}\) in gostota vode 0,9973 g·cm\(^{-3}\)?

Izražanje sestave raztopine in preračunavanje iz molarnosti v masni delež si oglejte pri vaji Raztopine.

Rezultat: 3,2 %

26. Kako smo pri vaji gostota določili koncentracijo raztopini natrijevega klorida?

27. Opišite umeritveno krivuljo, s pomočjo katere bi lahko določili koncentracijo raztopine natrijevega klorida iz njene gostote!

28. Kaj je areometer? Kako bi preverili, če je pravilno umerjen?

*29. Kaj je piknometer? Opišite določevanje gostote tekočine in gostote trdne snovi s piknometrom!

Piknometer je posoda, ki ji lahko točno določimo volumen. To naredimo tako, da najprej stehtamo prazen in suh ter nato z vodo napolnjen piknometer. Tako določimo maso vode v piknometu. V tabelah poiščemo podatek za gostoto vode pri temperaturi merjenja ter izračunamo volumen piknometra. Volumen piknometra tako določimo posredno, s tehtanjem tekočine z znano gostoto, kar je veliko natančnejše kot merjenje volumena z merilnim valjem ali pipeto.

Za določanje gostote tekočine stehtamo še piknometer napolnjen s to tekočino. Iz mase tekočine in volumena piknometra izračunamo gostoto tekočine.

Za določanje gostote trdnih snovi, stehtamo v piknometu najprej trden vzorec, nato piknometer dopolnimo s tekočino s poznano gostoto in ponovno stehtamo. Iz poznanega volumena pikonometra in mase ter volumena dolite tekočine izračunamo volumen trdnega vzorca.

Pri določanju volumena moramo paziti na temperaturo, saj se volumen in gostota s temperaturo spreminjata!
30. Izračunaj gostoto neznane tekočine iz eksperimentalnih podatkov pri 20 °C:
 - masa piknometra: 15,48 g
 - masa piknometra in vode: 34,186 g
 - masa piknometra in tekočine: 33,656 g
 - gostota vode: 0,9982 g/cm³

 Rezultat: 0,9699 g/cm³

 Ali je kepa iz čistega zlata? Utemelji!

 Kakšen je masni delež bakra, v primeru, če je trgovec goljufal? Pri računu predpostavi aditivnost volumnov! ($\rho_{\text{Cu}} = 8,92 \text{ kg/dm}³$, $\rho_{\text{Au}} = 19,3 \text{ kg/dm}³$)

 Pomoč:
 Nastavi dve enačbi z dvema neznankama, prva predstavlja aditivnost mase in druga aditivnost volumnov. V enačbi za aditivnost volumnov izrazi volumen posamezne kovine s pomočjo gostote in mase. Reši sistem dveh enačb z dvema neznankama in dobiš masi obeh kovin v zlitini. Kako se določi masni delež, lahko pogledaš k vaji Raztopine.

 Rezultat: ne; 0,14
Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

- normalni pogoji
- delni tlak plina (parcialni tlak plina)
- tlak plinske zmesi
- urejena enačba kemijske reakcije
- molsko razmerje
- masna bilanca

Splošna plinska enačba

1. Napišite splošno plinsko enačbo!
 - Kaj pomenijo simboli v tej enačbi?
 - Podajte vrednosti tlaka in temperature pri normalnih pogojih v dveh različnih enotah

 \[P_0 = \]
 \[T_0 = \]

 - Kakšen je molski volumen idealnega plina pri normalnih pogojih?
 \[V_0 = \]

 - Pretvorite v \(\text{N} \times \text{m}^{-2} \):
 \[1 \text{ atm } = \]
 \[1 \text{ Pa } = \]
 \[1 \text{ mbar } = \]
 \[1 \text{ Torr } = \]
 \[1 \text{ mmHg } = \]

 - Iz spremenljivk \(T, P, V \) in \(n \) nekega idealnega plina, lahko izračunate splošno plinsko konstanto. Iz molskega volumena plina pri normalnih pogojih izračunajte vrednost te konstante v naslednjih enotah:
 \[\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \] (na 5 veljavnih številk),
 \[\text{Pa} \cdot \text{cm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \] (na 4 veljavne številke),
 \[\text{Torr} \cdot \text{cm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \] (na 3 veljavne številke)!
Pri reševanju naloge si pomagajte s tabelami na strani 288 v delovnem zvezku Laboratorije vaje iz kemije. V pomoč naj vam bo še izračun splošne plinske konstante v Torr · cm³ · mol⁻¹ · K⁻¹.

\[R = \frac{P_o \cdot V_o}{T_o} = \frac{760 \text{ Torr} \cdot 22414 \text{ cm}^3}{\text{mol} \cdot 273,15 \text{ K}} = 62364 \text{ Torr} \cdot \text{cm}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \]

Odg.: Vrednost splošne plinske konstante je \(6,24 \times 10^4\) Torr · cm³ · mol⁻¹ · K⁻¹.

Preostala rezultata: 8,3145 J · mol⁻¹ · K⁻¹; 8,314 \times 10^6\ Pa · cm³ · mol⁻¹ · K⁻¹

2. Izračunajte množino in maso vodika v jeklenki z \(V = 20\) dm³ pri \(T = 25^\circ\text{C}\) in \(P = 25 \times 10^6\) Pa! Predpostavite, da se vodik obnaša kot idealni plin.

Rešitev:
\[P \cdot V = n \cdot R \cdot T \quad \text{in} \quad n = \frac{m}{M} \]
\[n = \frac{P \cdot V}{R \cdot T} = \frac{25 \times 10^6 \text{ Pa} \cdot 20 \cdot 10^3 \text{ cm}^3 \cdot \text{mol} \cdot \text{K}}{8,31 \times 10^6 \text{ Pa} \cdot \text{cm}^3 \cdot 298 \text{ K}} = 202 \text{ mol} \]
\[m = n \cdot M = 202 \text{ mol} \cdot \frac{2,0158 \text{ g}}{\text{mol}} = 407 \text{ g} \]

Odg.: V jeklenki je 0,20 kmol ali 0,41 kg vodika.

3. Izračunajte volumen 186 g kisika pri \(27^\circ\text{C}\) in \(2,5 \times 10^5\) Pa!

Rešitev:
\[P \cdot V = n \cdot R \cdot T \]
\[V = \frac{n \cdot R \cdot T}{P} = \frac{m \cdot R \cdot T}{M \cdot P} \]
\[V = \frac{186 \text{ g} \cdot 8,31 \times 10^6 \text{ Pa} \cdot \text{cm}^3 \cdot \text{mol} \cdot 300 \text{ K}}{\text{mol} \cdot \text{K} \cdot 32,00 \text{ g} \cdot 0,25 \times 10^6 \text{ Pa}} = 58,0 \text{ dm}^3 \]

Odg.: Volumen 186 g kisika pri \(27^\circ\text{C}\) in \(2,5 \times 10^5\) Pa je 58 dm³.

4. Koliko vodika (v molih in v gramih) je v jeklenki, če je njen volumen 10 dm³, temperatura \(25^\circ\text{C}\) in tlak 10 atm!

Rezultat: 4,1 mol; 8,2 g
5. Koliko molekul vodika vsebuje 1,0 mL H\textsubscript{2} pri tlaku 1,33 \times 10^{-3} Pa in pri 300 K?

Rešitev:
1 mol kateregakoli plina vsebuje Avogadrove število molekul, Avogadrovo število, \(N_A\), je 6,02\times10^{23} \text{ mol}^{-1}, \(N\) pomeni število molekul.

\[
P \cdot V = n \cdot R \cdot T \quad \text{in} \quad N = n \cdot N_A
\]

\[
N = \frac{N_A \cdot P \cdot V}{R \cdot T}
\]

\[
N = \frac{6,02 \times 10^{23} \cdot 1,33 \times 10^{-3} \text{ Pa} \cdot \text{1 mL} \cdot \text{K} \cdot \text{mol}}{\text{mol} \cdot 8,31 \times 10^{6} \text{ Pa} \cdot \text{mL} \cdot \text{300 K}} = 3,2 \times 10^{11}
\]

Odg.: 1,0 mililiter vodika pri 300 K in 1,33\times10^{-3} Pa vsebuje 3,2\times10^{11} molekul vodika.

6. Katere količine morate izmeriti in katere konstante morate poznati, če hočete izračunati število molekul plina v danem volumnu? Utemeljite odgovor, napišite tudi enačbo (enačbe), ki jo (jih) uporabili!

7. Izračunajte gostoto kisika (v g/dm3) pri normalnih pogojih!

Rešitev:
22,414 dm3 katerega koli plina pri normalnih pogojih je 1 mol plina, torej 31,998 g kisika. 1 dm3 kisika pa tehta 1,43 g (31,998 g/22,414 dm3), gostota je 1,4276 g/dm3.

Iz splošne plinske enačbe:

\[
P \cdot V = n \cdot R \cdot T \quad \text{in} \quad d = \frac{m}{V} \quad \text{ter} \quad m = n \cdot M
\]

\[
d = \frac{m}{V} = \frac{P \cdot M}{R \cdot T}
\]

Pri normalnih pogojih velja še:

\[
P = P_0
\]

\[
V = V_0
\]

\[
d = \frac{M}{V_0}
\]

\[
d = \frac{31,998 \text{ g/mol}}{22,414 \text{ dm}^3/\text{mol}} = 1,4276 \text{ g/dm}^3
\]
Odg.: Gostota kisika pri normalnih pogojih je 1,4276 g/dm3.

8. Gostota nekega plina pri normalnih pogojih je $9,0 \times 10^{-2}$ g/dm3. Izračunaj gostoto tega plina pri $15 ^\circ C$ in $9,4 \times 10^4$ Pa!

Pomoč:
Naloga se najeelegantneje reši z izračunom razmerja obeh gostot:

$$\rho_0 = \frac{P_0 \cdot M}{R \cdot T_0} \quad \text{in} \quad \rho_1 = \frac{P_1 \cdot M}{R \cdot T_1}$$

$$\frac{\rho_1}{\rho_0} = \frac{P_1 \cdot T_0}{P_0 \cdot T_1}$$

Rezultat: 0,079 g·dm3

9. Pri $20 ^\circ C$ je gostota dušika 1,20 g·dm3. Koliko znaša gostota omenjenega plina, če ob nespremenjenem tlaku zvišamo temperaturo na $70 ^\circ C$?

Rezultat: 1,03 g·dm3

10. Kolik je volumen dušika pri $–8 ^\circ C$ in pri tlaku 850 mm Hg, če zavzema enaka množina dušika pri $12 ^\circ C$ in tlaku 750 mm Hg volumen 5,5 dm3?

Rešitev:
V tej nalogi je opisan sistem, v katerem se množina plina ne spreminja, zato velja:

$$n = \frac{P_1 \cdot V_1}{R \cdot T_1} = \frac{P_2 \cdot V_2}{R \cdot T_2}$$

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$$

$$V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{T_1 \cdot P_2}$$

$$V_2 = \frac{750 \text{ mm Hg} \cdot 5,5 \text{ dm}^3 \cdot 265 \text{ K}}{285 \text{ K} \cdot 850 \text{ mm Hg}} = 4,51 \text{ dm}^3$$

Odg.: Volumen plina pri spremenjenih pogojih je 4,5 dm3.
11. Do katere temperature smemo segreti plin v avtoklavu, ki ima pri 18 °C tlak 5,0 atm, da ne presežemo največjega dovoljenega tlaka 20 atm? Predpostavimo, da se avtoklavu volumen pri segrevanju ne poveča.

Rešitev:

\[
\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \quad \text{in} \quad V_1 = V_2
\]

\[
T_2 = \frac{P_2 \cdot T_1}{P_1}
\]

\[
T_2 = \frac{20 \text{ atm} \cdot 291 \text{ K}}{5,0 \text{ atm}} = 1164 \text{ K}
\]

Odg.: Plin lahko segrejemo na 1,2×10³ K (na 890 °C).

12. V zaprti posodi, ki ima volumen 12 L, je CO₂ pri temperaturi 27 °C in tlaku 12 atm. Izračunajte tlak plina, če vsebino segrejemo na 100 °C!

Rešitev:

\[
\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \quad \text{in} \quad V_1 = V_2
\]

\[
P_2 = \frac{P_1 \cdot T_2}{T_1}
\]

\[
P_2 = \frac{12 \text{ atm} \cdot 373 \text{ K}}{300 \text{ K}} = 15 \text{ atm}
\]

Odg.: Tlak plina pri opisanih pogojih je 15 atm.

13. Pri 20 °C je volumen 0,252 mola kisika 6,0 dm³. Kolikšen je tlak? Kolikšen je volumen te množine kisika pri enakem tlaku in 70 °C?

Rezultat: 1,0×10² kPa; 7,0 dm³

14. V posodi s prostornino 2,00 dm³ ima plin pri temperaturi 20,0 °C tlak 1,32×10⁵ Pa. Kolikšen bo tlak plina, če segreješ posodo za 30,0 °C?

Rezultat: 146 kPa
15. Pri 273 K in 1,19×10⁵ Pa zavzema 28,0 g dušika volumen 19,1 dm³. Kolikšno prostornino zavzema ista količina dušika pri normalnih pogojih?

Rešitev:
28,0 g dušika pomeni 1 mol dušika, torej 22,4 dm³ pri normalnih pogojih.

Ali računsko:

\[\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \quad \text{in} \quad T_1 = T_2 \]

\[P_1 \cdot V_1 = P_2 \cdot V_2 \]

\[V_1 = \frac{P_2 \cdot V_2}{P_1} = \frac{1,19\times10^5 \text{ Pa} \cdot 19,1 \text{ dm}^3}{1,013\times10^5 \text{ Pa}} = 22,4 \text{ dm}^3 \]

Odg.: Dušik zavzema prostornino 22,4 dm³.

*16. Kolikšen je končni tlak, če pri konstantni temperaturi 23 °C 0,010 mg kisika stisnemo s 5,0 dm³ na 2,0 dm³?

Rezultat: 0,38 Pa

Plin nastane pri kemijski reakciji kovine z raztopino kisline

17. Koliko mL, koliko molov in koliko gramov vodika se sprosti pri reakciji 1,00 g Zn s prebitno količino solne kisline? Napišite urejeno enačbo reakcije! Plin lovimo pri 20 °C in pri 790 mm Hg.

Rešitev:

\[\text{Zn}^{(s)} + 2 \text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2^{(g)} \quad \text{ali} \]

\[\text{Zn}^{(s)} + 2 \text{H}^{+}^{(aq)} \rightarrow \text{H}_2^{(g)} + \text{Zn}^{2+}^{(aq)} \quad \text{ali} \]

\[\text{Zn}^{(s)} + 2 \text{H}^{+}^{(aq)} + 2 \text{Cl}^{-}^{(aq)} \rightarrow \text{Zn}^{2+}^{(aq)} + 2 \text{Cl}^{-}^{(aq)} + \text{H}_2^{(g)} \]

Iz urejene kemijske enačbe lahko razberemo, da pri reakciji iz 1 mola Zn nastane 1 mol H₂, kar lahko zapišemo z molskim razmerjem: \(\frac{n_{\text{Zn}}}{n_{\text{H}_2}} = \frac{1}{1} \)

\[n_{\text{Zn}} = n_{\text{H}_2} = \frac{1,00 \text{ g} \cdot \text{mol}}{65,39 \text{ g}} = 0,01529 \text{ mol} \]
Plinski zakoni

\[m_{H_2} = n_{H_2} \cdot M_{H_2} = 0,01529 \text{ mol} \cdot 2,0158 \text{ g} \cdot \text{mol}^{-1} = 0,0308 \text{ g} \]

\[P_{H_2} \cdot V_{H_2} = n_{H_2} \cdot R \cdot T_{H_2} \]

\[V_{H_2} = \frac{0,01529 \text{ mol} \cdot 62364 \text{ mm Hg} \cdot \text{mL} \cdot 293,15 \text{ K}}{\text{mol} \cdot \text{K} \cdot 790 \text{ mm Hg}} = 354 \text{ mL} \]

Odg.: 1,00 g Zn sprosti ob prebitni količini HCl 0,0153 mola ali 0,0308 g vodika, plin zavzema pri 20 °C in pri 790 mm Hg volumen 354 mL.

18. Napišite urejeno enačbo razkroja cinka v klorovodikovi kislini in pojasnite, kako je količina plina, ki se sprošča, odvisna od količine kovine, ki reagira!

19. V reakciji cinka in klorovodikove kisline se v skladu z naslednjo enačbo sprosti plin vodik.

\[\text{Zn}(s) + 2 \text{H}^+(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{H}_2(g) \]

Kakšno maso cinka naj dodamo v prebitno količino HCl, da bomo dobili 500 mL plina pri 25 °C in 997 mbar?

Rezultat: 1,3 g

20. Pri reakciji cinka v razredčeni kislini se je sprostilo 76,0 cm₃ vodika pri 18,0 °C in 86,0 kPa. Koliko g cinka je zreagiralo s kislino? Napišite enačbo kemijske reakcije cinka s kislino!

Rezultat: 0,177 g

21. Koliko cm³ vodika pri normalnih pogojih dobimo, če zreagira 10 g magnezija s prebitkom razredčene kisline? Napišite enačbo reakcije magnezija s kislino!

Rezultat: 9,2·10³ cm³

22. Koliko g Zn se razkroji, če polijemo kos cinka z raztopino klorovodikove kisline, ki vsebuje 100,0 g HCl (po reakciji nekaj cinka preostane)? Koliko g vodika se pri tem razvije? Napišite tudi enačbo reakcije, ki pri tem poteka!

Rešitev:

\[\text{Zn}(s) + 2 \text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2(g) \]

1 mol cinka reagira z dvema moloma HCl (dvema moloma H⁺), pri tem nastane 1 mol vodika ali zapis z molskim razmerjem:
23. Dvovalentno kovino (1,308 g) raztapljamo v kislini. Sprosti se 0,488 L vodika pri temperaturi 27 °C in pri tlaku 766 mm Hg. Izračunajte molsko maso kovine!

Rešitev:
Kovina je dvovalentna, kadar tvori ione z nabojem 2+, npr. Zn^{2+}. Iz urejene kemijske enačbe, v kateri simbol Me predstavlja kovino, razberemo, da se ob razkroju 1 mola kovine sprosti 1 molo vodika:

\[
\text{Me}_2(s) + 2 \text{H}^+(aq) \rightarrow \text{Me}_2(aq) + \text{H}_2(g)
\]

\[
n_{\text{Me}} = n_{\text{H}_2} = \frac{P_{\text{H}_2} \cdot V_{\text{H}_2}}{R \cdot T_{\text{H}_2}}
\]

\[
n_{\text{H}_2} = \frac{766 \text{ mm Hg} \cdot 0,488 \text{ mL} \cdot \text{mol} \cdot \text{K}}{62364 \text{ mm Hg} \cdot \text{mL} \cdot 300 \text{ K}} = 2,00 \cdot 10^{-2} \text{ mol}
\]

\[
M_{\text{Me}} = \frac{m_{\text{Me}}}{n_{\text{Me}}} = \frac{1,308 \text{ g}}{0,0200 \text{ mol}} = 65,5 \text{ g/mol}
\]

Odg.: Molska masa kovine je 65,5 g/mol.

24. Pri reakciji 0,75 g neke dvovalentne kovine s kislino se razvije 700 mL vodika pri normalnih pogojih. Ugotovi, katera kovina je to in napiši urejeno enačbo omenjene reakcije!

Rezultat: 24 g/mol, Mg; Mg_{(s)} + 2 H^+_{(aq)} \rightarrow Mg^{2+}_{(aq)} + H_2(g)
25. 5,0 g železa reagira s prebitkom razredčene kisline. Koliko g vodika se sprosti? Koliko molov in koliko L je to pri 20 °C in tlaku 1,0 atm? Napišite urejeno enačbo reakcije železa s kislinio, če pri reakciji nastanejo Fe$^{2+}$ ioni!

Rezultat: 0,90 mol; 0,18 g; 2,2 L; Fe(s) + 2 H$^+$ (aq) → Fe$^{2+}$ (aq) + H$_2$(g)

Daltonov zakon o plinskih zmeseh

26. Plin, ki se razvija pri reakciji, vodimo po stekleni cevki in ga lovimo tako, da izpodriva vodo iz narobe obrnjenega in z vodo napolnjenega merilnega valja v posodi z vodo. Pri temperaturi 20 °C in barometrskem tlaku 745 mm Hg je prostornina plina 200 mL. Kolikšen bi bil volumen suhega plina pri 780 mm Hg in 48 °C (parcialni tlak vode v zraku nasičenem z vodno paro je pri 20 °C 17,45 mm Hg)?

Rešitev:

Narobe obrnjen, z vodo napolnjen merilni valj damo v posodo z vodo in v merilnem valju vodimo plin, ki izpodriva vodo iz merilnega valja. Ko izenačimo nivoja vode v merilnem valju in v posodi z vodo, je tlak plina v merilnem valju enak tlaku plina v okolici (barometrskemu tlaku). V merilnem valju imamo zmes vodne pare in plina, ki se razvija pri reakciji. Barometrski tlak, P_b, je vsota delnega tlaka vode, P_{H_2O} in delnega tlaka plina, ki nastane pri reakciji, P_1:

$$P_b = P_{H_2O} + P_1$$

Narobe obrnjen, z vodo napolnjen merilni valj damo v posodo z vodo in v merilnem valju vodimo plin, ki izpodriva vodo iz merilnega valja. Ko izenačimo nivoja vode v merilnem valju in v posodi z vodo, je tlak plina v merilnem valju enak tlaku plina v okolici (barometrskemu tlaku). V merilnem valju imamo zmes vodne pare in plina, ki se razvija pri reakciji. Barometrski tlak, P_b, je vsota delnega tlaka vode, P_{H_2O} in delnega tlaka plina, ki nastane pri reakciji, P_1:

$$P_1 = P_b - P_{H_2O} = 745 \text{ mm Hg} - 17,45 \text{ mm Hg} = 727,6 \text{ mm Hg}$$

Računanje nadaljujemo kot pri nalogah, v katerih se spreminjata T in P, množina plina, pa ostane nespremenjena:

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$$

$$V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1}$$

$$V_2 = \frac{727,6 \text{ mm Hg} \cdot 200 \text{ mL} \cdot 321 \text{ K}}{780 \text{ mm Hg} \cdot 293 \text{ K}} = 204 \text{ mL}$$

Odg.: Prostornina plina pri opisanih pogojih je 204 mL.
27. Kako smo določili (izračunali) število molov vodika, ki se je sprostil pri raztapljanju kovine v kislini? Zakaj smo izmerili tudi temperaturo vode, nad katero smo lovili vodik?

28. Nad vodo lovimo vodik. Tlak vlažnega plina izenačimo z zunanjim tlakom (758 Torr), merimo pri temperaturi 20 °C in pri teh pogojih določimo vlažnemu plinu volumen 95 mL. Parcialni tlak vodne pare pri 20 °C je 17,5 Torr.

Izračunajte:
 a) parcialni tlak suhega vodika v posodi nad vodo,
 b) število molov vodika, ki se je razvil pri reakciji,
 c) volumen suhega vodika pri normalnih pogojih,
 d) število molekul vodika, ki se je razvil pri reakciji!

Rezultat: a) 741 Torr; b) 0,0038 mol; c) 86 mL; d) 2,3·10⁻²¹

29. Pri raztapljanju 0,272 g vzorca (vsebuje Mg in primesi, ki ne reagirajo) v koncentrirani HCl se je nad vodno gladino razvilo 185 cm³ H₂ pri temperaturi 21 °C. Celotni zračni tlak je 98,4 kPa. Parcialni tlak H₂O pri tej temperaturi je 2,4 kPa. Magnezij reagira s kislino po naslednji kemijski enačbi:

 Mg(s) + 2 H⁺(aq) → H₂(g) + Mg²⁺(aq)

 a) Izračunajte, koliko molov Mg je bilo v vzorcu!
 b) Kolikšna je bila masa Mg v vzorcu?
 c) Kolikšen je bil masni delež primesi v vzorcu?

Rezultat: a) 7,27×10⁻³ mol; b) 0,176 g; c) 35 %* (odštevanje ⇒ dve mesti!)

30. Vzorec je vseboval Zn in nekaj nečistoč, ki ne reagirajo s kislino. Pri reakciji 0,272 g vzorca v raztopini HCl se je nad vodno gladino razvilo 85 cm³ H₂ pri temperaturi 21 °C. Celotni barometrski tlak je 98,4 kPa Odvisnost parcialnega tlaka vode od temperature je podana v tabeli:

<table>
<thead>
<tr>
<th>T_voda [°C]</th>
<th>P_voda [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2,1</td>
</tr>
<tr>
<td>20</td>
<td>2,3</td>
</tr>
<tr>
<td>22</td>
<td>2,6</td>
</tr>
<tr>
<td>24</td>
<td>3,0</td>
</tr>
</tbody>
</table>

 a) Narišite graf parcialnega tlaka vode v odvisnosti od temperature in grafično določite parcialni tlak vode pri temperaturi, pri kateri smo izvajali eksperiment!
 b) Uredite kemijsko enačbo:
 Zn(s) + H⁺(aq) → H₂(g) + Zn²⁺(aq)
 c) Izračunajte, koliko Zn (masa) je bilo v vzorcu!

* Pri odštevanju mase Mg od mase vzorca ima razlika le dve določeni mesti!
d) Kakšen je bil masni delež primesi v vzorcu?*

e) Kaj pomenijo oznake v oklepajih pri prejšnji kemijski enačbi?
f) Ali gre za redoks reakcijo, za reakcijo hidrolize ali za nevtralizacijo?

Rezultat: a) 2,5 kPa; b) 1 2 1 1; c) 0,218 g; d) 20 %*; e) agregatno stanje ali vodno raztopino; f) redoks reakcija.

31. Pri raztapljanju Zn v HCl se je nad vodno gladino razvilo 105 cm³ H₂ pri temperaturi 22 °C. Barometrski tlak je 100,4 kPa. Parcralni tlak vode pri temperaturi 22 °C pa je 2,6 kPa.
a) Napišite urejeno kemijsko enačbo reakcije, ki je potekla!
b) Narišite aparaturo, s katero smo izvedli eksperiment!
c) Kolikšna je množina in kakšna masa Zn, ki smo ga raztapljali?
d) Kako bi vplivalo znižanje barometrskega tlaka na prostornino in množino sproščenega vodika? Utemeljite!
e) Ali gre za reakcijo nevtralizacije ali za redoks reakcijo?
f) Ali se navedenim reagentom spremenijo oksidacijska števila? Kako?

Rezultat: a) Zn(s) + 2H⁺(aq) → H₂(g) + Zn²⁺(aq); c) 4,18×10⁻³ mol; 274 mg; d) prostornina večja, množina enaka; e) redoks reakcija; f) da, cinku iz 0 v 2+ in vodiku iz +1 v 0.

*32. V posodi, ki vsebuje vodik in kisik, je pri temperaturi 27 °C tlak zmesi 1,50 atm. Če odstranimo ves kisik, se tlak zmanjša za 1,00 atm, masa plinske zmesi pa se zmanjša za 16 g. Izračunajte volumen posode, maso vodika v zmesi in molski ulomek obeh plinov, preden začnemo odstranjevati kisik!

Rešitev:

\[P_{zm} = P_{O_2} + P_{H_2} \]

\[P_{zm} = 1,5 \text{ atm}; \quad P_{O_2} = 1,0 \text{ atm}; \quad P_{H_2} = 0,5 \text{ atm} \]

\[n_{O_2} = \frac{m_{O_2}}{M_{O_2}} = \frac{16 \text{ g}}{31,998 \text{ g/mol}} = 0,50 \text{ mol} \]

\[P_{O_2} \cdot V = n_{O_2} \cdot R \cdot T \quad \text{in} \quad P_{H_2} \cdot V = n_{H_2} \cdot R \cdot T \]

\[\frac{n_{O_2}}{n_{H_2}} = \frac{P_{O_2}}{P_{H_2}} \]

\[n_{H_2} = \frac{P_{H_2}}{P_{O_2}} \cdot n_{O_2} = \frac{0,5 \text{ atm} \cdot 0,50 \text{ mol}}{1,0 \text{ atm}} = 0,25 \text{ mol} \]

* Pri odštevanju mase Zn od mase vzorca ima razlika le dve določeni mesti!
\[V = \frac{n \cdot P \cdot V_0 \cdot T}{T_0 \cdot P} = \frac{0,75 \text{ mol} \cdot 1 \text{ atm} \cdot 22,4 \text{ dm}^3 \cdot 300 \text{ K}}{273 \text{ K} \cdot 1,5 \text{ atm}} = 12 \text{ dm}^3 \]

\[m_{H_2} = n_{H_2} \cdot M_{H_2} = 0,25 \text{ mol} \cdot 2,0158 \text{ g/mol} = 0,50 \text{ g} \]

\[X_{H_2} = \frac{n_{H_2}}{\sum n} = \frac{0,25 \text{ mol}}{0,75 \text{ mol}} = 0,33 \]

\[X_{O_2} = \frac{n_{O_2}}{\sum n} = \frac{0,50 \text{ mol}}{0,75 \text{ mol}} = 0,67 \]

Odg.: Prostornina posode je 12,3 dm³, masa vodika je 0,50 g, molski ulomek kisika je 0,67, molski ulomek vodika pa 0,33.

33. V plinski zmesi je 3,9 g kisika, ostalo je dušik. Volumen zmesi pri tlaku 10,6×10⁴ Pa in temperaturi 20 °C je 5,6 dm³. Koliko g dušika je v plinski zmesi?

Rezultat: 3,4 g

34. V posodi z volumnom 15,0 L je pri temperaturi 27 °C 30,0 g dušika in 80,5 g ogljikovega dioksida. Izračunaj parcialna tlaka plinov in tlak plinske zmesi!

Rezultat: \(P_{N_2} = 178 \text{ kPa}; \quad P_{CO_2} = 304 \text{ kPa}; \quad P_{zm} = 482 \text{ kPa} \)

35. V posodi je 7,5 g dušika in 2,5 g kisika. Kolikšen je delni tlak vsake od komponent, če je tlak zmesi 1,00×10⁵ Pa?

Rezultat: 77 kPa; 23 kPa

Termični razkroj karbonatov

36. Vzorec apnenca (kalcijevega karbonata, \(\text{CaCO}_3 \)), ki vsebuje tudi nekaj nečistoč, razgradimo v \(\text{CaO} \) in \(\text{CO}_2 \). Pri reakciji 55 g vzorca nastane 11,2 dm³ \(\text{CO}_2 \) pri normalnih pogojih. Koliko odstotkov nečistoč je vseboval apnenec, če predpostavimo, da v reakciji niso reagirale?

Rešitev:

\[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \]
\[n_{CO_2} = \frac{V}{V_0} = \frac{11,2 \text{ dm}^3 \cdot \text{mol}}{22,4 \text{ dm}^3} = 0,500 \text{ mol} \]

Iz enačbe reakcije sledi:

\[n_{CO_2} = n_{CaCO_3} \]

\[m_{CaCO_3} = n_{CaCO_3} \cdot M_{CaCO_3} = 0,500 \text{ mol} \cdot 100,086 \text{ g/mol} = 50,05 \text{ g} \]

\[w_{CaCO_3} = \frac{50,05 \text{ g} \cdot 100}{55 \text{ g}} = 91\% . \]

Odg.: Vzorec je vseboval 9 \% nečistoč.

37. Mineral vsebuje 72 \% CaCO_3, ostalo je temperaturno obstojna kamnina. Pri močnem segrevanju kalcijev karbonat razpade v kalcijev oksid in ogljikov dioksid. Napišite urejeno enačbo reakcije in izračunajte, koliko g CaO nastane iz 50 g minerala pri takem segrevanju? Koliko tehta mineral po segrevanju?

Rezultat: CaCO_3 \rightarrow CaO + CO_2; 20 g CaO; 34 g

38. Koliko apnenca, ki vsebuje 95 \% čistega CaCO_3, porabimo pri razkroju v CaO in CO_2, da pri tem nastane 11,2 L CO_2 pri normalnih pogoje? (Pri segrevanju nečistoč se plin ne sprošča!)

Rezultat: 53 g

*39. Kamnina vsebuje 90 \% CaCO_3 in 10 \% MgCO_3. Pri močnem segrevanju karbonat razpade v oksid in ogljikov dioksid. Izračunajte, koliko m³ ogljikovega dioksida, merjeno pri normalnih pogojih, nastane pri termičnem razpadu 1,0 t apnenca! Napišite tudi reakciji, ki ponazarjata termični razpad omenjenih karbonatov!

Rešitev:

CaCO_3 \rightarrow CaO + CO_2

MgCO_3 \rightarrow MgO + CO_2

Kamnino lahko obravnavamo kot zmes v trdnem agregatnem stanju, njena sestava je podana z masnim deležem:

\[m_{kamnine} = m_{CaCO_3} + m_{MgCO_3} \]

\[m_{CaCO_3} = \frac{w_{CaCO_3} \cdot m_{kamnine}}{100} = \frac{90 \cdot 1000 \text{ kg}}{100} = 900 \text{ kg} \]
\[m_{\text{MgCO}_3} = 100 \text{ kg} \]

\[n_{\text{CaCO}_3} = \frac{m_{\text{CaCO}_3}}{M_{\text{CaCO}_3}} = \frac{9 \cdot 10^5 \text{ g} \cdot \text{mol}}{100,09 \text{ g}} = 8992 \text{ mol} \]

\[n_{\text{MgCO}_3} = \frac{m_{\text{MgCO}_3}}{M_{\text{MgCO}_3}} = \frac{10^5 \text{ g} \cdot \text{mol}}{84,32 \text{ g}} = 1186 \text{ mol} \]

Ogljikov dioksid nastaja pri dveh reakcijah, zato množino nastalega ogljikovega dioksida izračunamo s seštevanjem obeh prispevkov:

\[n_{\text{CO}_2} = n_{\text{CO}_2/\text{CaCO}_3} + n_{\text{CO}_2/\text{MgCO}_3}, \]

pri čemer je \(n_{\text{CO}_2/\text{CaCO}_3} \) množina ogljikovega dioksida, ki nastane pri razkroju \(\text{CaCO}_3 \) in
\(n_{\text{CO}_2/\text{MgCO}_3} \) množina ogljikovega dioksida, ki nastane pri razkroju \(\text{MgCO}_3 \). S pomočjo naslednjih dveh zaključkov, prebranih iz urejenih enačb kemijskih reakcij, izračunamo še množino in volumen \(\text{CO}_2 \):

\[n_{\text{CO}_2/\text{CaCO}_3} = n_{\text{CaCO}_3} \text{ in } n_{\text{CO}_2/\text{MgCO}_3} = n_{\text{MgCO}_3} \]

\[n_{\text{CO}_2} = n_{\text{CaCO}_3} + n_{\text{MgCO}_3} = 8992 \text{ mol} + 1186 \text{ mol} = 10178 \text{ mol} \]

\[V_{\text{CO}_2} = n \cdot V_0 = 10178 \text{ mol} \cdot 22,414 \text{ dm}^3 = 228 \text{ m}^3 \]

Odg.: Pri termičnem razpadu 1,0 t kamnine nastane 2,3\(\times 10^2 \) m\(^3 \) \(\text{CO}_2 \) pri normalnih pogojih.

*40. Kamnina vsebuje 87,0 % kalcijevega karbonata, ostalo je magnezijev karbonat. Pri segrevanju karbonat razpade na trden oksid in ogljikov dioksid. Izračunajte volumen ogljikovega dioksida pri 18 °C in tlaku 110 kPa, ki ga dobimo pri razpadu 100 g kamnine.

Rezultat: 22,5 dm\(^3 \)

*41. Kamnina vsebuje \(\text{CaCO}_3 \) in \(\text{MgCO}_3 \). Pri močnem segrevanju karbonat razpade na kovinski oksid in ogljikov dioksid. Kakšen je masni delež \(\text{CaCO}_3 \) in \(\text{MgCO}_3 \) v apnencu, če nastane pri termičnem razpadu 500 kg kamnine 115 m\(^3 \) \(\text{CO}_2 \) pri normalnih pogojih!

Pomoč pri reševanju:
V tej nalogi je opisan sistem, za katerega veljata naslednji dve enačbi z dvema neznankama:

\[m_{\text{kamnine}} = m_{\text{CaCO}_3} + m_{\text{MgCO}_3} \text{ in} \]

Plinski zakoni

\[n_{\text{CO}_2} = \frac{m_{\text{CaCO}_3}}{M_{\text{CaCO}_3}} + \frac{m_{\text{MgCO}_3}}{M_{\text{MgCO}_3}} \] (iz enačbe \(n_{\text{CO}_2} = n_{\text{CO}_2,\text{CaCO}_3} + n_{\text{CO}_2,\text{MgCO}_3} \))

Rezultat: 85,5 % \(\text{CaCO}_3 \) in 14,5 % \(\text{MgCO}_3 \)

Reakcije zlitin kovin z raztopino kisline

42. Iz 0,2500 g zlitine Mg in Cu se razvije pri reakciji s HCl 190 ml vodika pri 23 °C in tlaku 754 mm Hg. Izračunaj masni delež Cu v zlitini, če veš, da se Cu razlapla le v mešanici 3 HCl + HNO\(_3\), v raztopini HCl pa ne!

Rešitev:

V solni kislini se razlapla le magnezij, baker pa ne. Razlaplanje magnezija lahko opišemo z naslednjo enačbo:

\[\text{Mg}(s) + 2 \text{H}^+(aq) \rightarrow \text{H}_2(g) + \text{Mg}^{2+}(aq) \]

Množina vodika, ki nastane pri reakciji, je enaka množini magnezija v zlitini:

\[n_{\text{Mg}} = n_{\text{H}_2} \]

\[n_{\text{H}_2} = \frac{P_{\text{H}_2} \cdot V_{\text{H}_2}}{R \cdot T_{\text{H}_2}} = \frac{754 \text{ mm Hg} \cdot 190 \text{ mL} \cdot \text{mol} \cdot \text{K}}{62364 \text{ mm Hg} \cdot \text{mL} \cdot 296 \text{ K}} = 7,76 \times 10^{-3} \text{ mol} \]

\[w_{\text{Mg}} = \frac{n_{\text{Mg}} \cdot M_{\text{Mg}}}{m_{\text{zl}}} = 75,45 \% \]

\[w_{\text{Cu}} = 24,6 \% \]

Rezultat: 24,6 %

43. V kislini razlapljamo zlitino, ki vsebuje 87,0 % cinka, ostalo je magnezij. Plin, ki nastaja pri reakciji, lovimo v posodi. Izračunajte volumen plina pri 18 °C in tlaku 110 kPa, ki ga dobimo pri razlapljanju 100,0 g zlitine. V kislini se razlapljava obe kovini!

Pomoč pri reševanju:
Obe kovini reagirata s kislino in pri obeh reakcijah nastaja vodik. Iz urejenih enačb reakcij obeh kovin s kislino ugotovimo, da iz 1 mol kovine nastane 1 mol vodika. Množina nastalega vodika je enaka vsoti množin cinka in magnezija v zlitini. V 100,0 g zlitine je 87,0 g cinka in 13,0 g magnezija.

\[n_{\text{H}_2} = \frac{m_{\text{Mg}}}{M_{\text{Mg}}} + \frac{m_{\text{Zn}}}{M_{\text{Zn}}} \]
$n_{H_2} = \frac{13,0 \text{ g} \cdot \text{mol}}{24,305 \text{ g}} + \frac{87,0 \text{ g} \cdot \text{mol}}{65,39 \text{ g}} = 1,865 \text{ mol}$

Volumen vodika izračunate s splošno enačbo plinskega stanja.

Rezultat: 41,1 dm³

44. Kolikšen volumen vodika pri 20 °C in 1,04×10⁵ Pa se sprosti pri raztapljanju 0,07564 g zlitine magnezija in niklja v raztopini klorovodikove kisline, če je masni delež magnezija v zlitini 58,1 %, ostalo je nikelj? V kislini se raztapljata obe kovini!

Rezultat: 55,0 cm³

*45. Pri raztapljanju 0,07564 g zlitine magnezija in cinka v raztopini klorovodikove kisline se sprosti 55 cm³ vodika pri 20 °C in 1,04×10⁵ Pa. Kakšen je masni delež magnezija v zlitini?

Pomoč pri reševanju:
Iz splošne plinske enačbe izračunate množino vodika, ki je nastal pri raztapljanju obeh kovin v zlitini. Pri izračunu mase cinka in magnezija v zlitini si pomagajte z naslednjima dvema enačbama z dvema neznankama:

$m_{zl} = m_{Mg} + m_{Zn}$

$n_{H_2} = \frac{m_{Mg}}{M_{Mg}} + \frac{m_{Zn}}{M_{Zn}}$

Rezultat: 61 %

*46. Pri reakciji 0,2500 g zlitine Mg in Co z raztopino klorovodikove kisline se razvije 190 ml vodika pri 23 °C in tlaku 754 mm Hg. Izračunaj masni delež Co v zlitini! V kislini se raztapljata obe kovini, pri čemer nastanejo ioni z nabojem 2⁺!

Rezultat: 41,8 %

*47. 0,3000 g zlitine Mg in Ni izpodrime iz kisle raztopine 185 ml vodika pri 22 °C in tlaku 754 mm Hg. Izračunaj masni delež Ni v zlitini! V kislini se raztapljata obe kovini, pri čemer nastanejo Mg²⁺ in Ni²⁺ ioni!

Rezultat: 65,9 %
Še druge zanimive naloge

*48. V zaprti posodi z volumnom 1,00 dm3, napолнjeni s kisikom pri normalnih pogojih, zgori 1,00 g žvepla, pri čemer nastane žveplov dioksid, nekaj kisika preostane. Izračunaj skupni tlak plinov v posodi po reakciji pri $T = 0 \, ^\circ C$ in masni delež posameznih komponent v zmesi po reakciji!

Rešitev:

enačba reakcije: $S(s) + O_2(g) \rightarrow SO_2(g)$

Pred reakcijo:

množina žvepla: $n_S = \frac{m_S}{M_S} = \frac{1,00 \, g}{32,066 \, g/mol} = 0,03119 \, mol$

množina kisika: $n_{O_2} = \frac{V_{O_2}}{V_m} = \frac{1,00 \, dm^3}{22,414 \, dm^3/mol} = 0,04461 \, mol$

Število molov plina se pri reakciji ne spremeni: 1 mol žvepla reagira z enim molom kisika, nastane 1 mol žveplovega dioksida. Vsak mol porabljenega kisika pomeni mol nastalega žveplovega dioksida. Ker je končna temperatura enaka začetni (normalni pogoji, $T = 0 \, ^\circ C$), se tudi tlak ne spremeni (normalni pogoji, $p = 1 \, atm$)

Po reakciji preostane v reakcijski mešanici 0,0134 mol kisika (0,0446 mol – 0,0312 mol) in 0,0312 mol žveplovega dioksida.

Po reakciji:

masa SO$_2$: $m_{SO_2} = n_{SO_2} \cdot M_{SO_2} = 0,03119 \, mol \cdot 64,064 \, g/mol = 1,998 \, g$

masa O$_2$: $m_{O_2} = n_{O_2} \cdot M_{O_2} = 0,01342 \, mol \cdot 31,998 \, g/mol = 0,4294 \, g$

masa zmesi: $m = m_{O_2} + m_{SO_2} = 1,998 \, g + 0,4294 \, g = 2,427 \, g$

masni delež žveplovega dioksida v zmesi: $w_{SO_2} = \frac{m_{SO_2} \cdot 100}{m} = \frac{1,998 \, g \cdot 100}{2,427 \, g} = 82,3 \, %$

masni delež kisika v zmesi: $w_{O_2} = \frac{m_{O_2} \cdot 100}{m} = \frac{0,4297 \, g \cdot 100}{2,427 \, g} = 17,7 \, %$

Odg.: Po reakciji je masni delež žveplovega dioksida v reakcijski zmesi 82,3 % in masni delež kisika 17,7 %.

49. Plinska zmes vsebuje 7,0 g N$_2$, 2,0 g O$_2$ in 1,0 g H$_2$. Vodik zgori v vodo. Koliko molov H$_2$ preostane? Izračunaj masne deleže vseh sestavin v zmesi po gorenju.

46
Rešitev:

Tabela: Masa, molska masa in množina plinov v zmesi pred reakcijo

<table>
<thead>
<tr>
<th>plin</th>
<th>m/g</th>
<th>$M/g \cdot mol^{-1}$</th>
<th>n/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2</td>
<td>7,0</td>
<td>28,014</td>
<td>0,250</td>
</tr>
<tr>
<td>H_2</td>
<td>1,0</td>
<td>2,0158</td>
<td>0,496</td>
</tr>
<tr>
<td>O_2</td>
<td>2,0</td>
<td>31,998</td>
<td>0,0625</td>
</tr>
</tbody>
</table>

Enačba gorenja: $2 \, H_2 + O_2 \rightarrow 2 \, H_2O$

Iz urejene enačbe ugotovimo, da iz $0,0625 \, mol \, O_2$ in $0,125 \, mol \, H_2$ nastane $0,125 \, mol \, H_2O$.

Tabela: Masa, molska masa in množina plinov v zmesi po gorenju

<table>
<thead>
<tr>
<th>plin</th>
<th>n/mol</th>
<th>$M/g \cdot mol^{-1}$</th>
<th>m/g</th>
<th>w/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2</td>
<td>0,250</td>
<td>28,014</td>
<td>7,0</td>
<td>70</td>
</tr>
<tr>
<td>H_2</td>
<td>0,371</td>
<td>2,0158</td>
<td>0,748</td>
<td>7,5</td>
</tr>
<tr>
<td>H_2O</td>
<td>0,125</td>
<td>18,015</td>
<td>2,25</td>
<td>22,5</td>
</tr>
<tr>
<td>O_2</td>
<td>0</td>
<td>31,998</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Odg.: Po gorenju preostane $0,75 \, mol$ vodika, masni deleži plinov v zmesi po gorenju pa so $70 \, \%$ dušika, $7,5 \, \%$ vodika in $22,5 \, \%$ vode.

50. V $100 \, g$ plinske zmesi je $70 \, g \, N_2$, $20 \, g \, O_2$ in $10 \, g \, H_2$. Kakšna je sestava zmesi, če vodik in kisik zreagirata v vodo?

Rezultat: $70 \, g \, N_2$; $7,5 \, g \, H_2$; $22,5 \, g \, H_2O$

*51. Največja dopustna koncentracija klora v zraku je $2,00 \, mg/m^3$. Kolikšna je masa klora v $120 \, m^3$ zraku, ki vsebuje največjo dopustno količino tega plina? Kolikšno prostornino zavzema ta klor pri normalnih pogojih?

Rešitev:
Največja dopustna koncentracija klora v zraku je podana z masno koncentracijo:

$$\gamma = \frac{m_{oplojenca}}{V_{raztopine}}.$$ Naloga opisuje zmes plinov.

$$m_{Cl_2} = \gamma \cdot V$$

$$m_{Cl_2} = \frac{2,00 \, mg}{m^3} \cdot 120 \, m^3 = 240 \, mg$$
Plinski zakoni

\[V = \frac{m \cdot P_0 \cdot V_0 \cdot T_0}{M \cdot T_0 \cdot P_0} = \frac{m \cdot V_0}{M} = \frac{0,240 \text{ g} \cdot 22,414 \text{ dm}^3 \cdot \text{mol}}{\text{mol} \cdot 70,906 \text{ g}} = 75,9 \text{ cm}^3 \]

Odg.: 120 m³ zraka vsebuje 240 mg Cl₂, ta plin zavzema p.n.p. 75,8 cm³.

*52. Maksimalna dopustna koncentracija živosrebrovih par v zraku je 0,1 mg/m³. Koliko atomov živega srebra vsebuje kubični decimeter zraka, v katerem je onesnaženje z živim srebrom doseglo maksimalno dopustno vrednost?

Rezultat: \(3 \times 10^{14}\)
RAZTOPINE

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

zmes
raztopina
masni delež
molski delež
molarnost
molalnost
masna koncentracija
masa, volumen, gostota (pomen in preračunavanje)
molarnost v povezavi z normalnostjo
speциција topljenca v raztopini (molekule/ioni)
in v povezavi s tem formalnost raztopine
(glej tudi poglavje Kisline in baze I in II in tam zlasti stopnjo disociacije)

Temperaturna odvisnost koncentracije (in gostote!!) v tem okviru ni posebej obravnavana, prav je, da se je zavedamo in jo upoštevamo, ko je to smiselno in naloga to zahteva. Vedeti pa moramo, da je pri preračunavanju vsebnosti snovi v raztopinah, ki so praviloma vse bolj ali manj pri sobni temperaturi (od 20 do 30 °C), ta odvisnost v okviru natančnosti pri teh vajah zanemarljiva.

Pri nekaterih izračunih vas bo morda presenetilo veliko število določenih mest pri vstavljanju v formule in pri delnih izračunih. Praviloma so vse konstante in molske mase uporabljene (v računu!) s toliko mesti, kot jih je v Navodilih za vaje in šele rezultat je potem zaokrožen na primerno število določenih mest. (Po priporočilu o tem, da naj račun vsebuje samo eno zaokroževanje in da upoštevamo pri „prepisanih“ vrednostih več mest, kot je nujno potrebno, da z računom ne bi slučajno zmanjšali natančnosti končnega rezultata.)

* Glej Uvod, strani 4-6.
Raztopine

Osnovna preračunavanja koncentracijskih enot

1. Raztopina HCl ($\rho = 1,06$ g/cm3) vsebuje 5,00 molov HCl v litru raztopine ($c = 5,00$ M). Izračunajte procentnost (= masni odstotek HCl oz. masni delež HCl) za opisano raztopino!

Rešitev:
1,00 dm3 tj. (1,06 g/cm3 \cdot 1000 cm3 =) 1060 g raztopine vsebuje 5 molov tj. (5,00 mol \cdot 36,461 g/mol =) 182,3 g HCl

182,3 g od 1060 g je (182,5 : 1060 =) 17,2 %

Odg.: Opisana 5,00 M raztopina HCl je 17,2 %.

2. Izračunajte procentnost in molalnost 4,50 M raztopine H$_2$SO$_4$ z gostoto 1,26 g/mL!

Rešitev:
1 L 4,50 M H$_2$SO$_4$, tj. ($m = V \cdot \rho = 10^3$ mL \cdot 1,26 g/mL =) 1,26 kg raztopine vsebuje 4,50 mola, tj. ($m = n \cdot M = 4,50$ mol \cdot 98,0778 g/mol =) 441 g (čiste) H$_2$SO$_4$

v 100 g raztopine je torej ([441 g:1,26 kg] \cdot 100 g =) 35,0 g čiste H$_2$SO$_4$ in 65,0 g vode

v 1000 g vode je torej ([35,029 g:64,971 g] \cdot 1000 g =) 539,15 g čiste H$_2$SO$_4$, kar je ($n = m/M = 539,15$ g:98,0778 g/mol =) 5,50 mol

ali:

m (molalnost raztopine) =

$$m = \frac{m(\text{masa topljenca})}{M(\text{molska masa topljenca})} = \frac{35,029 \text{ g mol}}{98,0778 \text{ g} / 0,064971 \text{ kg}} = 5,50 \text{ mol/kg}$$

Odg.: Opisana raztopina je 35,0 %, njena molalna koncentracija je 5,50 mol/kg.

3. Izračunajte molski ulomek (= množinski delež) in molarno koncentracijo etanola (C$_2$H$_5$OH) v 96,0 % vodni raztopini tega alkohola, če 160,0 mL raztopine tehta 128,96 g!

Rešitev:

$$x(\text{toplenec}) = \frac{n(\text{toplenec})}{n(\text{topilo}) + n(\text{toplenec})} = \frac{\frac{m(\text{toplenec})}{M(\text{toplenec})}}{\frac{m(\text{topilo})}{M(\text{topilo})} + \frac{m(\text{toplenec})}{M(\text{toplenec})}}$$

$M(\text{C}_2\text{H}_5\text{OH}) = 46,07$ g/mol
$n_{\text{etanol}} = \frac{96,0 \text{ g mol}}{46,0654 \text{ g}} = 2,084 \text{ mol}$

$x_{\text{etanol}} = \frac{2,084 \text{ mol}}{2,306 \text{ mol}} = 0,904$

$\left(\begin{array}{l}
 n_{\text{H}_2\text{O}} = \frac{4,0 \text{ g mol}}{18,0148 \text{ g}} = 0,222 \text{ mol} \\
 x_{\text{H}_2\text{O}} = \frac{0,222 \text{ mol}}{2,306 \text{ mol}} = 0,096
\end{array}\right)$

ali:

$x_{\text{etanol}} + x_{\text{voda}} = 1$

$x_{\text{voda}} = 1 - 0,904 = 0,096$

v 100 g raztopine je 2,084 mol etanola

v 128,96 g tj. v 160,0 mL je $\frac{2,084 \text{ mol} \cdot 128,96 \text{ g}}{100 \text{ g}}$ mol etanola

v 1000 mL je $\frac{2,084 \text{ mol} \cdot 128,96 \text{ g} \cdot 1000 \text{ mL}}{100 \text{ g} \cdot 160,0 \text{ mL}} = 16,80 \text{ mol}$

Odg.: Molski ulomek etanola v 96,0 % vodni raztopini je 0,904, njegova molarna koncentracija je 16,8 mol/L.

4. Izračunajte molarnost in molalnost raztopine, ki jo pripravimo z raztapljanjem 21,04 g NaCl v 500 g vode! Gostota tako pripravljene raztopine je 1,027 g/cm³.

Rešitev:

$M(\text{NaCl}) = 58,443 \text{ g/mol}$

42,08 g NaCl je $0,7200 \text{ mol NaCl} \ (n = \frac{m}{M})$

v 1042,08 g raztopine, kar je $\frac{1042,08 \text{ g}}{1,027 \text{ g/mL}} = 1015 \text{ mL}$, je $0,7200 \text{ mol NaCl}$

molarnost pomeni množino topljenca v litru raztopine, torej je v 1 L (= 1000 mL):

$\frac{0,7200 \text{ mol} \cdot 1000 \text{ mL}}{1015 \text{ mL}}$ tj. 0,710 mol

ali:

$c = \frac{n \ (\text{topljenca})}{V \ (\text{raztopine})} = \frac{n \ (\text{topljenca})}{m \ (\text{masa raztopine})} = \frac{21,04 \text{ g} \cdot \text{mol}}{58,44 \text{ g}} = \frac{0,710 \text{ mol}}{0,52104 \text{ kg} \cdot \text{dm}^3} = 0,710 \text{ mol/dm}^3$

v 500 g H₂O je 21,04 g NaCl
5. Izračunajte molarnost raztopine mravljinčne kisline (HCOOH), če je masa topljenca v enem kubičnem decimetru raztopine 15,64 g?
Rezultat: 0,3398 mol/L

6. Koliki sta molarna in molalna koncentracija topljenca v 15% vodni raztopini saharoze (C_{12}H_{22}O_{11})? Gostota raztopine je 1,059 g/cm³.
Rezultat: 0,46 mol/L; 0,52 mol/kg

7. Molalna koncentracija KCl v vodni raztopini je 2,50 mol·kg⁻¹. Kolikšen je masni delež KCl?
Rezultat: 0,157

8. Kolikšen je masni delež topljenca v vodni raztopini ocetne kisline (CH_{3}COOH), če je molarna koncentracija topljenca 1,340 mol/dm³ in gostota omenjene raztopine 1,001 g/cm³?
Rezultat: 0,08039

9. Zatehtate 20,54 g NaCl in 180,0 g H₂O. Dobro premešate, da se sol raztopi, s piknometrom izmerite, da ima tako pripravljena raztopina gostoto 1,069 g/mL.
Izračunajte:
a) molarno koncentracijo NaCl
b) molalno koncentracijo NaCl
c) masni delež NaCl
d) molski delež NaCl
Rezultat: a) 1,873 mol/L; b) 1,953 mol/kg; c) 0,1024; d) 0,03398

10. Masna koncentracija in gostota imata formalno enaki enoti (g/L), vendar z njima opisemo različni količini! Pojasnite, kakšna je razlika!
Namig: Oboje pomeni maso (grami, kilogrami) v volumski enoti (liter, mililiter, kubični decimeter), vprašanje je masa česa na volumen česa in upoštevanje definicije!

*11. Izračunajte molarno koncentracijo 50,0 % vodne raztopine KOH z gostoto 1,514 g/cm³!
Koliko g KOH vsebuje 0,500 L take raztopine?

Rešitev:
50,0 % raztopina pomeni 0,500 g topljenca v 1,00 g raztopine, to je v

\[V = \frac{m}{\rho} = \frac{1,00 \text{ g} \cdot \text{cm}^3}{1,514 \text{ g}} = 0,6605 \text{ cm}^3 \text{ raztopine} \]

ali:

v 1,00 dm³ (tj. \(m = V \cdot \rho = 1000 \text{ cm}^3 \cdot 1,514 \text{ g/cm}^3 = 1514\text{g} \)) raztopine je polovica (757 g) topljenca, kar je \(n = \frac{m}{M} = \frac{757 \text{ g} \cdot \text{mol}}{(39,098 + 15,999 + 1,0079) \text{ g}} = 13,5 \text{ mol} \)

lahko tudi z uporabo formule: \(c = \frac{n}{V} = \frac{m(\text{KOH})}{M(\text{KOH}) \cdot V(\text{raztopine})} \)

0,500 L raztopine pomeni: \(m = V \cdot \rho = 500 \text{ cm}^3 \cdot 1,514 \text{ g/cm}^3 = 757 \text{ g} \) raztopine, od tega je 50 % (tj. 378,5 g) topljenca

Odg.: Molarna koncentracija opisane raztopine KOH je 13,5 mol/dm³, 500 mL take raztopine vsebuje 379 g topljenca.

*12. Molarna koncentracija vodne raztopine KOH z gostoto 1,514 g/cm³ je 13,5 mol/dm³. Izračunajte molalno koncentracijo (m) raztopine!

Rešitev:
1000 cm³ (tj. 1514 g) raztopine vsebuje 13,5 mol (tj. 13,5 mol \(\cdot 56,1049 \text{ g/mol} = 757,35 \text{ g} \)) KOH

masna sestava raztopine je: 757 g KOH in (1514 g - 757 g =) 757 g H₂O (slučajno 1:1!)

v 1000 g topila je torej 1000 g KOH, kar je \(\frac{1000 \text{ g} \cdot \text{mol}}{56,1049 \text{ g}} = 17,83 \text{ mol} \)

Odg.: Raztopina KOH je 17,8 molalna (vsebuje 17,8 molov KOH v 1000 g topila).

*13. Vodna raztopina MgCl₂ (\(d = 1,082 \text{ g/cm}^3 \)) vsebuje v 600 mL raztopine 64,92 g topljenca (MgCl₂). Izračunajte molarnost raztopine, molalnost raztopine, molski ulomek topljenca in molski ulomek topila!
Raztopine

\[c = \frac{n(\text{topljenca})}{V(\text{raztopine})} = \frac{m(\text{topljenca})}{M(\text{topljenca})} = \frac{64,92 \text{ g} \cdot \text{mol}}{95,211 \text{ g}} = 1,136 \text{ mol}/\text{dm}^3 \]

\[\text{molalnost} = \]

\[= \frac{n(\text{topljenca})}{m(\text{topila})} = \frac{m(\text{topljenca})}{m(\text{raztopine}) - m(\text{topljenca})} = \]

\[= \frac{m(\text{topljenca})}{M(\text{topljenca})} \cdot \frac{V(\text{raztopine}) \cdot d(\text{raztopine}) - m(\text{topljenca})}{d(\text{raztopine}) - m(\text{topljenca})} = \]

\[= \frac{64,92 \text{ g} \cdot \text{mol}}{95,21 \text{ g}} = 1,167 \cdot 10^{-3} \text{ mol/g} = 1,167 \text{ mol/kg} \]

600 mL raztopine tj. \((m = V \cdot d = 600 \text{ cm}^3 \cdot 1,082 \text{ g/cm}^3 =) 649 \text{ g raztopine vsebuje} 64,92 \text{ g topljenca in} 584 \text{ g vode} \]

\[x(\text{topljenec}) = \frac{n(\text{topljenec})}{n(\text{topilo}) + n(\text{topljenec})} = \frac{m(\text{topljenec})}{M(\text{topilo}) + M(\text{topljenec})} = \]

\[= \frac{64,92 \text{ g} \cdot \text{mol}}{95,21 \text{ g}} \]

\[= \frac{64,92 \text{ g} \cdot \text{mol}}{95,21 \text{ g}} \cdot \frac{18,0148 \text{ g}}{584,08 \text{ g} \cdot \text{mol}} = \frac{0,682 \text{ mol}}{32,433 \text{ mol} + 0,682 \text{ mol}} = 0,0206 \]

\[x(\text{topilo}) + x(\text{topljenec}) = 1 \]

\[x(\text{topilo}) = 1 - x(\text{topljenec}) = 1 - 0,0206 = 0,9794 \]

Odg.: Opisana vodna raztopina magnezijevega klorida je 1,136 molarna, 1,169 molalna, molski ulomek magnezijevega klorida je 0,0206, molski ulomek vode je 0,9794.

Priprava raztopin

14. Koliko litrov 5,0 molarne raztopine lahko pripavimo iz 100 mL 98 % H₂SO₄ z gostoto 1,84 g/cm³?
100 mL 98 % H₂SO₄ je \(m = V \cdot \rho \) 184 g 98 % H₂SO₄, torej (184 g:0,98 =) 180,32 g čiste (100 %) H₂SO₄, kar pomeni (180,32 g:98,0778 g/mol =) 1,839 mol H₂SO₄

1,839 mol H₂SO₄ zadošča za \(c = n/V = 1,839 \text{ mol:} 5,0 \text{ mol/L} \) = 0,368 L 5,0 M H₂SO₄

Odg.: Iz 100 mL 98 % H₂SO₄ lahko pripravimo 0,37 L 5,0 M raztopine H₂SO₄.

Opomba: Glede na število določenih mest podatkov (največ tri določena mesta) je delni rezultat 1,839 pretiravanje (4 določena mesta). Smiselno je računati z enim (ali celo dvema) mestom (mestoma) več, vendar moramo biti potem pozorni, da končni rezultat podamo s primernim številom mest (98 % H₂SO₄ pomeni dve!! določeni mesti!)

15. Koliko g 5,00 % raztopine NaOH lahko pripravimo iz 20,0 g NaOH? Izračunajte molarnost te raztopine, če je njena gostota 1,05 g/cm³!

Rešitev:
5,00 % raztopina NaOH vsebuje 5,00 g NaOH v 100 g raztopine \(\Rightarrow \) 20,0 g NaOH zadostuje za 400 g raztopine

400 g raztopine, tj. \(V = m/\rho = 400 \text{ g:} 1,05 \text{ g/cm}^3 \) = 381 cm³ raztopine vsebuje 20,0 g, tj. \(n = m/M = 20,0 \text{ g:} 39,9969 \text{ g/mol} \) = 0,500 mol NaOH

\[c = \frac{n}{V} = \frac{0,500 \text{ mol}}{0,381 \text{ dm}^3} = 1,31 \text{ mol/dm}^3 \]

Odg.: Iz 20,0 g NaOH lahko pripravimo 400 g 5,00 % raztopine, 5,00 % raztopina NaOH je 1,31 molarna.

16. Koliko g vode in koliko g K₂CO₃ potrebujemo za pripravo 1,00 L 15,0 % raztopine K₂CO₃ z gostoto 1,189 g/cm³?

Rešitev:
1,00 L raztopine tj. \(m = V \cdot \rho = 1000 \text{ mL:} 1,189 \text{ g/mL} \) = 1189 g raztopine vsebuje 15,0 %, tj. (1189 g:0,150 =) 178 g K₂CO₃

1,00 L (= 1189 g) 15,0 % raztopine K₂CO₃ vsebuje:
178 g K₂CO₃ in (1189 g - 178 g =) 1011 g H₂O

Odg.: Za pripravo 1,00 L 15,0 % raztopine K₂CO₃ potrebujemo 178 g topljenca in 1011 g vode.

Opomba: Praktično pripravimo raztopino tako, da zatehtamo 178 g K₂CO₃ v litrsko merilno bučko, raztopimo v nekaj vode in raztopino dopolnimo z vodo do oznake 1,0 L.

17. Koliko g čiste dušikove(V) kisline vsebuje 1,0 mL 2,00 M raztopine HNO₃?

Rešitev:
1,0 mL 2,00 M HNO₃ vsebuje \(n = c \cdot V = 2,00 \text{ mol/L:} 0,0010 \text{ L} \) = 0,00200 mola HNO₃, kar pomeni \(m = n \cdot M = 0,00200 \text{ mol:} 63,0119 \text{ g/mol} \) = 0,126 g čiste HNO₃
Raztopine

Odg.: 1,0 mL 2,00 M raztopine dušikove (V) kisline vsebuje 0,13 g čiste HNO₃.
Opomba: Odmerjanje volumena 1,0 mL pomeni, da bo vse, kar bo odvisno od natančnosti te
meritve, določeno le na dve veljavni (določeni) mesti!

18. Koliko g 10,0 % H₂SO₄ lahko pripravimo iz 100 g 90,0 % H₂SO₄? Kakšna je molarna
koncentracija 10,0 % raztopine H₂SO₄, če je njena gostota 1,05 g/mL?

Rešitev:
100 g 90,0 % H₂SO₄ vsebuje 90,0 g čiste H₂SO₄,
kar zadošča za 900 g 10 % raztopine H₂SO₄
1,00 L 10 % raztopine H₂SO₄ (tj. m = d·V = 1,05 g/mL·10³ mL =) 1050 g te raztopine
vsebuje 105 g čiste H₂SO₄ (tj. n = m/M = 105 g:98,0778 g/mol =)
1,07 mol H₂SO₄

Odg.: Iz 100 g 90 % raztopine H₂SO₄ lahko pripravimo 900 g 10 % raztopine H₂SO₄,
pripravljena raztopina je 1,07 M.

19. Koliko mL 50,0 % raztopine H₂SO₄ (ρ = 1,395 g/cm³) potrebujemo za pripravo 1,00 L
0,500 M raztopine H₂SO₄?

Rešitev:
1,00 L 0,500 M H₂SO₄ vsebuje 0,500 mola (čiste) H₂SO₄,
tj. (m = n·M = 0,500 mol·98,0778 g/mol =) 49,04 g (čiste) H₂SO₄
v 100 g 50,0 % H₂SO₄ je 50,0 g čiste H₂SO₄, 49,04 g čiste H₂SO₄ pa je v
(100 g·49,04 g:50,0 g =) 98,08 g 50 % H₂SO₄,
kar je (V = m/d = 98,08 g·1,395 g/mL =) 70,3 mL 50 % H₂SO₄

Odg.: Za pripravo 1,00 L 0,500 M raztopine H₂SO₄ potrebujemo 70,3 mL 50,0 % H₂SO₄.

20. Koliko mL 16,0 % žveplove (VI) kisline z gostoto 1,11 g/cm³ potrebujemo za pripravo
4,00 kg 0,500 molalne H₂SO₄?

Rešitev:
0,500 molalna raztopina vsebuje 0,500 mola tj.
(m = n·M = 0,500 mol·98,0778 g/mol =) 49,04 g H₂SO₄ v 1000 g H₂O (topila!)

1049 g 0,500 molalne raztopine vsebuje 1000 g H₂O in 49,04 g H₂SO₄
v 4000 g 0,500 molalne raztopine H₂SO₄ je torej ([49,04 g·1049,04 g]·4000 g =) 187 g
čiste H₂SO₄.

187 g čiste H₂SO₄ je v ([100 g·16,0 g]·187 g =) 1169 g 16,0 % H₂SO₄,
kar pomeni (V = m/d = 1169 g·1,11 g/cm³ =) 1053 cm³ 16,0 % H₂SO₄

Odg.: Za pripravo 4,00 kg 0,500 molalne raztopine H₂SO₄ potrebujemo 1,05·10³ cm³
16,0 % raztopine H₂SO₄. (Bolj smiselno 1,05 L 16,0 % H₂SO₄).
21. Odgovori na naslednja vprašanja:
 a) Kolikšen je masni delež NaCl v raztopini, če zmešamo 100,0 g vode in 11,0 g NaCl?
 b) Kolikšna je molarna koncentracija take raztopine, če je ima le-ta gostoto 1,07 g/cm³?
 c) Kolikšen je molski delež topljenca v raztopini?
 d) Kolikšen je molski delež topila v raztopini?

Rezultat:
 a) 0,0991; b) 1,81 mol/L; c) 0,0328; d) 0,967

22. Koliko cm³ 36,0 % HCl z gostoto 1,18 g/cm³ potrebujemo za pripravo 5,00 L 0,300 molarne raztopine HCl? Koliko vode vsebuje opisana raztopina?

Rešitev:
 5,00 L 0,300 M raztopine HCl vsebuje 1,50 mola HCl (tj. 1,50 mol·36,4609 g/mol = = 54,69 g HCl)

 100 g 36 % HCl vsebuje 36 g HCl, za 54,69 g HCl potrebujemo torej 151,9 g HCl, kar pomeni
 \[V = \frac{m}{\rho} = \frac{151,9 \text{ g} \cdot \text{cm}^3}{1,18 \text{ g}} = 128,7 \text{ cm}^3 \]

 Odg.: Za pripravo 5,00 L 0,300 M raztopine HCl potrebujemo 129 cm³ 36,0 % raztopine HCl

*23. Koliko kg 5,00 molarne raztopine HCl z gostoto 1,06 g/cm³ potrebujemo za pripravo 4,00 kg 2,00 molalne raztopine HCl?

Rešitev:
 Opomba: Oznako \(m \) uporabljamo za maso, zato bomo za molalnost (raztopine) (topila) + (topljenca) in ker hkrati velja:

 \[\text{molalnost} = \frac{n\text{(topljenca)}}{m\text{(topila)}} \]
 oz. množina topljenca v kilogramu topila \(\Rightarrow \)

 v 1000 g topila je \(n \) molov topljenca, torej \(n \times M \) gramov topljenca ali:

 \[m\text{(raztopine)} = 1000 \text{ g (topilo!)} + n \times M \text{ (topljenec!)} = \]

 \[= 1000 \text{ g} + 2,00 \text{ mol} \times 36,4609 \text{ g/mol} = 1073 \text{ g} \]

 V tem izračunu je \(n \) številčno enako molalnosti, ker računamo maso topljenca v 1000 g topila.

 v 4000 g raztopine je torej \(([72,92 \text{ g}:1073 \text{ g}] \cdot 4000 \text{ g} =) 272 \text{ g HCl, kar pomeni} \)

 \(n = \frac{m}{M} = 272 \text{ g} : 36,4609 \text{ g/mol} =) 7,46 \text{ mol HCl} \)

 To je množina HCl, potrebna za pripravo 4,00 kg 2,00 molalne raztopine HCl.
7,46 mol HCl je v (7,46 mol:5,00 mol/L =) 1,49 L 5,00 M HCl, kar pomeni
(m = V·d = 1,49 L·1,06 kg/L =) 1,58 kg

Odg.: Za pripravo 4,00 kg 2,00 molalne raztopine HCl potrebujemo 1,58 kg 5,00 molarne raztopine HCl.

*24. Koliko mL 16,0 % raztopine H$_2$SO$_4$ z gostoto 1,11 g/mL potrebujemo za pripravo 200 mL 1,10 molalne raztopine H$_2$SO$_4$ z gostoto 1,05 g/mL?

Rešitev:
200 mL 1,10 molalne H$_2$SO$_4$ raztopine je (m = V·d = 200 mL·1,05 g/mL =) 210 g raztopine

m(raztopine) = m(topila) + m(topljenca) in ker hkr velja

molalnost = \(\frac{n(\text{topljenca})}{m(\text{topila})} \) oz. množina topljenca v kilogramu topila ⇒

v 1000 g topila je n molov topljenca, torej n × M gramov topljenca ali:
m(raztopine) = 1000 g (topilo!) + n × M (topljenec!) =
= 1000 g + 1,10 mol×98,0778 g/mol = 1000 g + 108 g = 1108 g

v 210 g raztopine je torej ([107,9 g:1108 g]:210 g =) 20,45 g čiste H$_2$SO$_4$,
kar pomeni ([100 g:16,0 g]:20,45 g =) 127,8 g oz.

(V = m/d = 128,7 g:1,11 g/mL =) 115,1 mL 16,0 % raztopine H$_2$SO$_4$

Odg.: Za pripravo 200 mL 1,10 molalne raztopine H$_2$SO$_4$ potrebujemo 115 mL 16,0 % raztopine H$_2$SO$_4$.

*25. Koliko mL žveplove(VI) kisline z masnim deležem 96 % in z gostoto 1,84 g/cm3 potrebujemo za pripravo 5,0 dm3 raztopine s koncentracijo 0,10 mol/dm3?

v 5,0 dm3 0,10 M H$_2$SO$_4$ je 5,0·9,808 g H$_2$SO$_4$ = 49,04 g čiste tj. 100 % H$_2$SO$_4$, kar pomeni (49,04 g:0,96) = 51,0 g 96 % H$_2$SO$_4$

\[V = \frac{m}{d} = \frac{51,0 \text{ g cm}^3}{1,84 \text{ g}} = 27,7 \text{ cm}^3 \]

Odg.: Za pripravo 5,0 dm3 0,10 M H$_2$SO$_4$ potrebujemo 28 cm3 96 % H$_2$SO$_4$.

*26. a) Kako pripravimo 500 mL vodne raztopine NaCl s koncentracijo 0,250 mol/dm3?
b) Kolikšna je molarna koncentracija raztopine, ki jo pripravimo tako, da 20,0 mL omenjene raztopine razredčimo z vodo do skupnega volumna 100 mL?
c) Kakšna je molarna koncentracija 8,00 % raztopine NaCl, če ima le-ta gostoto 1,07 g/cm3?
d) Kakšen je molski delež topljenca v zgornji (c) raztopini?
e) Kakšen je molski delež topila v zgornji (c) raztopini?
f) Kakšna je molarna koncentracija raztopine, ki jo pripravimo, tako da 20,0 mL zgornje (c) raztopine razredčimo z vodo do skupnega volumna 100 mL?

Rešitev in rezultati:
a) zatehtamo 0,125 mol (= 7,305 g) NaCl, kvantitativno prenesemo v 500 mL bučko, raztopimo v nekaj vode in dopolnimo z vodo do oznake;
b) 5,00 \cdot 10^{-2} \text{ mol/dm}^3; c) 1,46 \text{ mol/dm}^3, d) 0,0261; e) 0,974; f) 0,293 \text{ mol/dm}^3

*27. Molarna koncentracija H\textsubscript{2}SO\textsubscript{4} v vodni raztopini je 0,71 mol·dm-3. Raztopino ste pripravili z razredčevanjem v 1000 ml bučki tako, da ste odmerili potreben volumen 96 % H\textsubscript{2}SO\textsubscript{4} z gostoto 1,83 g/cm3. Kolik je bil ta volumen?

Rezultat: 40 mL

*28. Na voljo so: tehtnica, NaCl, voda, 1000 mL merilna bučka in 100 mL merilna bučka, merilne pipete (z njimi lahko odmeriš določen volumen in ga preneseš iz ene bučke v drugo) in birete.
a) Kako bi pripravil 1000 ml 1,24 mol/L raztopine NaCl?
b) Kako bi iz raztopine NaCl s koncentracijo 1,24 mol/L pripravil 100 mL raztopine NaCl s koncentracijo 0,124 mol/L?
c) Kako bi iz raztopine NaCl s koncentracijo 1,24 mol/L pripravil 100 mL raztopine NaCl s koncentracijo 0,184 mol/L?

Rešitve in rezultati:
a) 72,5 g NaCl zatehtamo v 1000 mL bučko, raztopimo v nekaj vode, in dodamo vodo do oznake;
b) 10,0 mL raztopine (a) odpetiramo v 100 mL merilno bučko, dodamo vodo do oznake,
c) 14,8 mL raztopine(a) odmerimo v 100 mL merilno bučko, dodamo vodo do oznake.

*29. Iz 73,5 % dušikove(V) kisline hočemo pripraviti 27,5 % dušikovo (V) kislino. Koliko vode moramo dodati 100 gramom 73,5 % kisline, da dobimo 27,5 % kisline? Koliko molov čiste kisline vsebuje tako pripravljena raztopina?

Rešitev:
v 100 g 73,5 % HNO\textsubscript{3} je 73,5 g čiste kisline (HNO\textsubscript{3})
v 100 g 27,5 % HNO\textsubscript{3} je 27,5 g čiste kisline (HNO\textsubscript{3})

73,5 g čiste kisline zadostuje za \(\frac{73,5 \text{ g} \cdot 100 \text{ g}}{27,5 \text{ g}} = 267,27 \text{ g} \) 27,5 % kisline

100 gramom 73,5 % kisline torej dodamo 167,27 g H\textsubscript{2}O

Kislina vsebuje \(\frac{73,5 \text{ g}}{63,0119 \text{ g}} = 1,17 \text{ mol HNO}_3 \)
Odg.: K 100 g 73,5 % HNO₃ dodamo za pripravo 27,5 % HNO₃ 167 g H₂O, raztopina vsebuje 1,17 mol HNO₃.

Priprava raztopin s kristalohidrati

30. Koliko g CaCl₂·12 H₂O bi morali zatehtati, da bi pripravili 50,0 g 12,0 % raztopine CaCl₂?

Rešitev:
V 50,0 g 12,0 % raztopine CaCl₂ je 6,00 g brezvodnega CaCl₂ \((M = 110,984 \text{ g/mol})\). V 6,00 gramih je 0,05406 molov brezvodne soli. Ker hidratiziran kalcijev klorid na mol brezvodnega klorida (CaCl₂) vsebuje 12 molov vode, ga bomo očitno morali zatehtati več, da bomo zadostili zahtevi, da je v 50,0 g raztopine 0,05406 molov CaCl₂. To dodatno maso upoštevamo tako, da zahtevamo množino molske maso snovi, ki jo tehtamo. V našem primeru je to CaCl₂·12 H₂O \((M = (110,984 + 12 \times 18,0148) \text{ g/mol} = 327,1616 \text{ g/mol})\) in ne CaCl₂ \((110,984 \text{ g/mol})\). Masa ki jo zatehtamo, je tako produkt množine molske maso hidratizirane soli \((m = 17,7 \text{ g})\).

Nalogo lahko rešimo tudi drugače:

\[
50,0 \text{ g raztopine vsebuje } 6,00 \text{ g CaCl}_2
\]
\[
110,984 \text{ g CaCl}_2 \text{ pomeni } 327,1616 \text{ g CaCl}_2 \cdot 12 \text{ H}_2\text{O}
\]
\[
6,00 \text{ g CaCl}_2 \quad \Rightarrow \quad \frac{327,1616 \text{ g } 6,00 \text{ g}}{110,984 \text{ g}} = 17,7 \text{ g}
\]

Odg.: Zatehtati bi morali 17,7 g hidratizirane soli.

31. Koliko gramov CuSO₄·5 H₂O moramo raztopiti v 500 mL bučki, da dobimo raztopino te soli s koncentracijo 1,50 mol·dm⁻³?

Rešitev:
Če imamo za pripravo raztopine na voljo le kristalohidrat, moramo upoštevati, da le-ta vsebuje tudi vodo, zato ga moramo zatehtati več, kot pa bi porabili brezvodne soli za pripravo raztopine z enako molaro koncentracijo. Podatek, da raztopino pripravljamo v 500 mL bučki nam pove, da je to končni volumen raztopine. Ker želimo pripraviti raztopino s koncentracijo 1,50 mol·dm⁻³, to pomeni, da bomo potrebovali \(c_{\text{razt.}} \times V_{\text{razt.}} = n_{\text{molov topljenca}} \times 1,50 \text{ mol·dm}^{-3} \times 0,500 \text{ dm}^3 = 0,750 \text{ mol}\)
Množina CuSO₄ je enako v brezvodnem in hidratiziranem bakrovem sulfatu, zato:

\[
\frac{n_{\text{SOLI}}}{n_{\text{HIDR.SOLI}}} = \frac{m_{\text{HIDR.SOLI}}}{M_{\text{HIDR.SOLI}}}; \quad m_{\text{HIDR.SOLI}} = n_{\text{SOLI}} \times M_{\text{HIDR.SOLI}}
\]
\[
= 0,750 \text{ mol} \times 249,682 \text{ g/mol} = 187 \text{ g}
\]

Odg.: Raztopiti moramo 187 g bakrovega sulfata(VI) pentahidrata.

*32. Pripraviti moramo 10,0 % raztopino CuSO₄. Za koliko % moramo povečati zatehto topljenca, če imamo na voljo CuSO₄·5 H₂O. Za koliko % moramo zmanjšati količino
vode? Spremembe obakrat računajte glede na količini komponent, ki bi jih uporabili pri pripravi raztopine z brezvodnim topljencem.

Rešitev:
Nalogo bomo najlažje izračunali, če zgoraj omenjene % prevedemo v konkretne mase. Če je raztopina CuSO₄ 10 % to pomeni, da 1000 g raztopine vsebuje 100 g CuSO₄ in 900 g H₂O. Množina CuSO₄, ki ustreza 100 g CuSO₄, je:

\[n_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{M_{\text{CuSO}_4}} = \frac{100 \text{ g}}{159,608 \text{ g/mol}} = 0,6265 \text{ mol} \]

Če imamo kristalohidrat, bo potrebna množina le tega za pripravo 10 % raztopine enaka, vendar bo zaradi vključene vode masa večja.

\[m_{\text{CuSO}_4} = n_{\text{CuSO}_4} \times M_{\text{kristalohidrata}} = 0,6265 \text{ mol} \times 249,682 \text{ g/mol} = 156,4 \text{ g} \]

Zatehto topljenca moramo torej povečati za 156,4 g – 100 g = 56,4 g, kar predstavlja

\[\frac{m_{\text{dodatna}}}{m_{\text{osnovna}}} \times 100 = \frac{56,4}{100} \times 100 = 56,4 \% \]

Ker vodo dodamo že s kristalohidratom (56,4 g) bo potrebno zato zmanjšati količino vode:

\[\frac{m_{\text{dodatna}}}{m_{\text{osnovna}}} \times 100 = \frac{56,4}{900} \times 100 = 6,23 \% \]

Odg.: Zatehto topljenca moramo povečati za 56,4 %, količino vode pa moramo zmanjšati za 6,23 %.

Speciacija raztopin

*33. Koliko molov NaCl, koliko Cl⁻ ionov in koliko g topljenca vsebuje 10,0 g 0,823 molarne vodne raztopine natrijevega klorida, če je njena gostota 1,03 g/cm³?

Rešitev:

\[n = c \cdot V = \frac{0,823 \text{ mol/dm}^3 \cdot 10,0 \text{ g} \cdot \text{dm}^3 \cdot 10^{-3}}{1,03 \text{ g}} = 7,99 \cdot 10^{-3} \text{ mol} \]

\[V = \frac{m}{\rho} = \frac{10,0 \text{ g} \cdot \text{cm}^3}{1,03 \text{ g}} = 9,71 \text{ cm}^3 \]

\[m = n \times M = 7,99 \times 10^{-3} \text{ mol} \times 58,443 \text{ g/mol} = 0,467 \text{ g} \]

\[N = n \times N_A = 7,99 \cdot 10^{-3} \text{ mol} \times 6,023 \cdot 10^{23}/\text{mol} = 4,81 \cdot 10^{21} \]
Odg.: Raztopina vsebuje 7,99·10^{-3} mol NaCl, tj. 0,467 g NaCl oz. 4,81·10^{21} Cl^{-} ionov.

Dodatna vprašanja

34. Kako najpogosteje definiramo sestavo raztopin in v kakšnih enotah izražamo vsebnosti topljencev?

35. Kakšna je vloga gostote pri preračunavanju različnih načinov izražanja sestave raztopin?

36. Pri katerih načinih izražanja sestave raztopine moramo, če hočemo biti natančni, navesti temperaturo in pri katerih je ta podatek nepotreben?
KEMIJSKO RAVNOTEŽJE

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

ravnotežne koncentracije

ravnotežna konstanta (brez enot, glej Uvod)

merjenje absorbance

vpliv pogojev na kemijsko ravnotežje

1. V reaktorju poteka pri 700 °C reakcija \(N_2 + 3 H_2 \rightleftharpoons 2 NH_3 \). Ravnotežne koncentracije so: 0,5 mol/L \(NH_3 \), 2,0 mol/L \(N_2 \) in 2,0 mol/L \(H_2 \). Izračunajte ravnotežno konstanto pri dani temperaturi!

Rešitev:

\[
K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2] \times [\text{H}_2]^3} = \frac{(0,5)^2}{(2,0) \times (2,0)^3} = 1,56 \times 10^{-2}
\]

Odg.: Vrednost ravnotežne konstante za opisani primer je \(1,56 \times 10^{-2} \).

2. Čisti \(\text{PCl}_5 \) (\(c = 2,0 \text{ mol/dm}^3 \)) segrejemo na 230 °C. Pri tej temperaturi disociira 15 % fosforjevega pentaklorida. Izračunajte ravnotežno konstanto za reakcijo:
\(\text{PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2 \) pri teh pogojih!

Rešitev:

\[
\begin{align*}
\text{PCl}_5 & \rightleftharpoons \text{PCl}_3 + \text{Cl}_2 \\
(c - s) & = (2 - 0,30) \\
s & = 0,30 \text{ mol/dm}^3
\end{align*}
\]
\[c = 2 \text{ mol/dm}^3; \quad s = 0,15 \cdot 2 \text{ mol/dm}^3 = 0,30 \text{ mol/dm}^3\]

\[
K_c = \frac{[\text{PCl}_3] \cdot [\text{Cl}_2]}{[\text{PCl}_5]} = \frac{(0,30)^2}{(1,70)} = 5,3 \times 10^{-2}
\]

Odg.: Ravnotežna konstanta za opisano reakcijo pri omenjenih pogojih je \(5,3 \times 10^{-2} \).

3. Za reakcijo $A + 2B \rightleftharpoons C$ so ravnotežne koncentracije reaktantov in produktov:

$[A] = 0,6 \text{ mol/dm}^3$, $[B] = 1,2 \text{ mol/dm}^3$, $[C] = 2,0 \text{ mol/dm}^3$. Določite konstanto ravnotežja za to reakcijo in začetne koncentracije snovi, če začnemo reakcijo z zmesjo reaktantov (začetna koncentracija $[C] = 0 \text{ mol/dm}^3$)!

Rešitev:
enačba reakcije: $A + 2B \rightleftharpoons C$ (iz enega mola A in dveh molov B nastane en mol C)

$$K_c = \frac{[C]}{[A] \cdot [B]^2} = \frac{(2,0)}{(0,6)\cdot(1,2)^2} = 2,3$$

začetne koncentracije: $c_A = 0,6 \text{ mol/dm}^3 + 2,0 \text{ mol/dm}^3 = 2,6 \text{ mol/dm}^3$
$c_B = 1,2 \text{ mol/dm}^3 + 4,0 \text{ mol/dm}^3 = 5,2 \text{ mol/dm}^3$
$c_C = 0 \text{ mol/dm}^3$

Odg.: Ravnotežna konstanta za reakcijo pri opisanih pogojih je 2,3; začetne koncentracije reaktantov in produktov so: $[A] = 2,6 \text{ mol/dm}^3$, $[B] = 5,2 \text{ mol/dm}^3$ in $[C] = 0 \text{ mol/dm}^3$.

4. Če spustimo 92 g N_2O_4 v evakuirano posodo ($V = 1,0 \text{ L}$), disociira pri 50 °C 40 % N_2O_4 po enačbi: $N_2O_4 \rightleftharpoons 2 \text{ NO}_2$. Izračunajte konstanto ravnotežja za opisano reakcijo in ravnotežni koncentraciji N_2O_4 in NO_2 v mol/L!

Rešitev:

$$M(N_2O_4) = 92,01 \text{ g/mol}$$

$$n(N_2O_4) = m(N_2O_4)/M(N_2O_4) = 1,0 \text{ mol}$$

$$[N_2O_4] = n(N_2O_4)/V = (1,0 - 0,40\cdot1,0) \text{ mol/1 L} = 0,6 \text{ mol/L}$$

$$[\text{NO}_2] = n(\text{NO}_2)/V = 0,40\cdot2 \text{ mol/1 L} = 0,8 \text{ mol/L}$$

$$K_c = \frac{[\text{NO}_2]^2}{[N_2O_4]} = \frac{(0,8)^2}{(0,6)} = 1,1$$

Odg.: Za opisano reakcijo je vrednost konstanse kemijskega ravnotežja 1,1; ravnotežna koncentracija N_2O_4 je 0,6 mol/L in ravnotežna koncentracija NO_2 je 0,8 mol/L.

5. V posodi z volumenom 12 L segrevamo PCl_5 do temperature 250 °C. Pri teh pogojih PCl_5 delno disociira po enačbi: $\text{PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2$. V ravnotežju je 0,21 mola PCl_5, 0,32 mola PCl_3 in 0,32 mola Cl_2. Izračunajte ravnotežno konstanto pri danih pogojih in molske ulomke posameznih komponent v ravnotežni mešanici!

Rešitev:

$$\text{PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2$$
6. V posodi z volumnom 1,0 dm3 poteka naslednja ravnotežna reakcija:

\[
\text{CO(g)} + 2 \text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH(g)}
\]

Reakcijo smo pričeli z 2,00 mol CO in 0,50 mol H$_2$. V ravnotežju je v reakcijski posodi 0,20 mol produkta. Izračunajte konstanto kemijskega ravnotežja!

Rezultat: 11,1

7. Za reakcijo:

\[
\text{I}_2(g) \rightleftharpoons 2 \text{I}(g)
\]

je pri temperaturi 800 K vrednost za konstanto kemijskega ravnotežja $3,1 \times 10^{-5}$. Kakšni sta ravnotežni množini I$_2$ in I v reakcijski posodi z volumnom 1,00 dm3, če smo reakcijo pričeli z 0,0200 mol I$_2$?

Rezultat: 0,0196 mol; 0,0008 mol

8. V posodi poteka pri 1000 K naslednja reakcija:

\[
2 \text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2 \text{SO}_3(g)
\]

V reakcijski zmesi je ravnotežna koncentracija SO$_2$ in O$_2$ enaka in znaša 0,110 mol/dm3. Konstanta ravnotežja je 0,0423. Kolikšna je ravnotežna koncentracija produkta?

Rezultat: 0,00750 mol/dm3

9. V reakcijsko posodo z volumnom 1,000 dm3 smo uvedli 5,076 g I$_2$. Če vsebino segrejemo na 800 K, I$_2$ razpade v skladu z reakcijo:

\[
\text{I}_2(g) \rightleftharpoons 2 \text{I}(g)
\]

Izračunajte, koliko utežnih odstotkov I$_2$ razpade, če je konstanta kemijskega ravnotežja pri omenjeni temperaturi $3,1 \times 10^{-5}$!
Rezultat: 2,0 %

10. Žveplova(VI) kislina reagira z vodo po naslednji enačbi:
 \[\text{H}_2\text{SO}_4 + 2 \text{H}_2\text{O} \rightleftharpoons \text{SO}_4^{2-} + 2 \text{H}_3\text{O}^+ \]

 Napišite, kako izračunamo konstanto kemijskega ravnotežja za navedeno kemijsko reakcijo!
 Rezultat: a) \[K_c = \frac{[\text{SO}_4^{2-}] \times [\text{H}_3\text{O}^+]^2}{[\text{H}_2\text{SO}_4] \times [\text{H}_2\text{O}]^2} \]

11. Izračunajte konstanto kemijskega ravnotežja za reakcijo 2 HCl \(\rightleftharpoons \) H2 + Cl2, če smo v posodo z volumenom 12 dm³ dali 105 g vodikovega klorida in 2 g vodika. Ko se vzpostavi ravnotežje, je v posodi še 47,5 g vodikovega klorida.
 Rezultat: 0,83

12. Kako smo določili konstanto ravnotežja za reakcijo, v kateri nastaja železov tiocianatni kompleks?

13. V reakcijski posodi smo 20,0 cm³ raztopine bakrovega sulfata, CuSO4, s koncentracijo 5,00×10⁻² mol/dm³, in zmešali 10,0 cm³ ocetne kisline s koncentracijo 0,175 mol/dm³ ter raztopino razrešili na 50,0 cm³. Koncentracija vodikovih ionov se med poskusom ni spremenjala in je bila 1,00 mol/dm³. Določili smo ravnotežno koncentracijo iona Cu(CH₃COO)⁺ in sicer je bila 1,46×10⁻² mol/dm³. Izračunajte konstanto kemijskega ravnotežja za naslednjo reakcijo, pri čemer sledite postopnemu načinu reševanja:
 Rešitev:
 \[\text{Cu}^{2+} (\text{aq}) + \text{CH}_3\text{COOH} (\text{aq}) \rightleftharpoons \text{Cu(CH}_3\text{COO})^+ (\text{aq}) + \text{H}^+ (\text{aq}) \]
 Izraz za konstanto kemijskega ravnotežja, \(K_c \) = \[\frac{[\text{Cu(CH}_3\text{COO})^+] \times [\text{H}^+]}{[\text{Cu}^{2+}] \times [\text{CH}_3\text{COOH}]} \]
 - Začetna množina bakrovih ionov, \(n(\text{Cu}^{2+}) = 1,0 \times 10^{-3} \text{ mol} \)
 - Začetna množina ocetne kisline, \(n(\text{CH}_3\text{COOH}) = 1,75 \times 10^{-3} \text{ mol} \)
 - Ravnotežna koncentracija ionov Cu(CH₃COO)⁺, \[[\text{Cu(CH}_3\text{COO})^+] = 1,46 \times 10^{-2} \text{ mol/dm}^3 \]
 - Ravnotežna množina ionov Cu(CH₃COO)⁺, \(n\left(\text{Cu(CH}_3\text{COO})^+\right) = 7,3 \times 10^{-4} \text{ mol} \)
 - Ravnotežna množina bakrovih ionov, \(n(\text{Cu}^{2+}) = 2,7 \times 10^{-4} \text{ mol} \)
 - Ravnotežna množina ocetne kisline, \(n(\text{CH}_3\text{COOH}) = 1,02 \times 10^{-3} \text{ mol} \)
- Ravnotežna koncentracija bakrovih ionov, \([\text{Cu}^{2+}] = 5,4 \times 10^{-3} \text{ mol/dm}^3 \)
- Ravnotežna koncentracija ocetne kisline, \([\text{CH}_3\text{COOH}] = 0,0204 \text{ mol/dm}^3 \)
- Izračun vrednosti konstante kemijskega ravnotežja, \(K_c = 1,3 \times 10^2 \)

14. V vodni raztopini ionov Fe\(^{3+}\) in tiocianove kisline nastane kompleks \([\text{FeSCN}]^{2+}\) in ioni \(\text{H}^+ \). Eksperiment naredimo tako, da zmešamo 8,00 mL raztopine \(\text{Fe(NO}_3\text{)}_3 \) s koncentracijo 3,00×\(10^{-3}\) mol/L in 5,00 mL raztopine HSCN s koncentracijo 5,00×\(10^{-3}\) mol/L. Tako \(\text{Fe(NO}_3\text{)}_3 \) kot HSCN sta raztopljena v HNO\(_3\) s koncentracijo 1,00 mol/L. V ravnotežju določite, da je koncentracija kompleksa \([\text{[FeSCN]}^{2+}\] = 1,30×\(10^{-4}\) mol/L. Napišite enačbo reakcije nastanka kompleksa! Izračunajte ravnotežno konstanto omenjene reakcije! Izračunajte množino prostih Fe\(^{3+}\) ionov v ravnotežni mešanici! Izračunajte množino \([\text{FeSCN}^{2+}\] v ravnotežni mešanici!

Rezultat: 42,3; 2,23×\(10^{-5}\) mol; 1,69×\(10^{-6}\) mol

15. Eksperiment napravite enako kot pri nalogi štev.14 (glej zgoraj), le da namesto 8 mL \(\text{Fe(NO}_3\text{)}_3 \) vzamete 6 mL omenjene raztopine. Vsi ostali dodatki in pogoji meritev (tlak, temperatura…) ostajajo nespremenjeni. Ali bi (če bi, na kakšen način) omenjena sprememba vplivala na velikost ravnotežne konstante? Odgovor utemeljite!

Rezultat: ne

16. Kaj menite, ali bi nastalo več ali manj kompleksa, če bi bila topljenca \(\text{Fe(NO}_3\text{)}_3 \) in HSCN raztopljena v HNO\(_3\) s koncentracijo 0,1 mol/L in ne 1 mol/L kot v zgoraj opisanih nalogah (naloge štev. 14. in štev. 15)? Odgovor utemeljite!

Rezultat: več

17. Tik pred meritvijo absorbance nastalih kompleksnih tiocianatoželezovih(III) ionov, \([\text{FeSCN}]^{2+}\) se iz epruvete polije nekaj raztopine, katere absorbancio namervamo meriti! Ali je manjkajoči volumen smiselno dopolniti z 0,5 mol/L HNO\(_3\) (koncentracija kisline v reakcijski zmesi), ali bo meritev bolj točna, če ne prilijemo nič kisline? Odgovor utemeljite!

Rezultat: ne smemo dopolniti

18. Zmešamo 5,0 cm\(^3\) raztopine \(\text{Fe(NO}_3\text{)}_3 \) s koncentracijo 0,0010 mol/dm\(^3\) in 5,0 cm\(^3\) raztopine HSCN s koncentracijo 0,0010 mol/dm\(^3\). Končni volumen raztopine je 10,0 cm\(^3\). Koncentracija vodikovih ionov je konstantna, [H\(^+\)] = 0,500 mol/dm\(^3\). Ko se vzpostavi ravnotežje, s pomočjo kolorimetra določimo ravnotežno koncentracijo kompleksnih ionov \([\text{FeSCN}]^{2+}\), ki znaša 2,9×\(10^{-5}\) mol/dm\(^3\).

\[
\text{Fe}^{3+} + \text{HSCN} \rightleftharpoons [\text{FeSCN}]^{2+} + \text{H}^+ \]
Kemijsko ravnotežje

a) Kakšni sta začetni množini Fe\(^{3+}\) in HSCN?

b) Kakšne so ravnotežne množine Fe\(^{3+}\), HSCN in \([\text{FeSCN}]^{2+}\)?

c) Kakšne so ravnotežne koncentracije Fe\(^{3+}\), HSCN in \([\text{FeSCN}]^{2+}\)?

d) Izračunajte ravnotežno konstanto kemijske reakcije!

Rezultat: a) \(5,0 \times 10^{-6}\) mol; \(5,0 \times 10^{-6}\) mol; b) \(4,7 \times 10^{-6}\) mol; \(4,7 \times 10^{-6}\) mol; \(2,9 \times 10^{-7}\) mol; c) \(4,7 \times 10^{-4}\) mol/dm\(^3\); \(4,7 \times 10^{-4}\) mol/dm\(^3\); \(2,9 \times 10^{-5}\) mol/dm\(^3\); d) 65,4

19. Ravnotežno mešanico pripravimo tako, da zmešamo 25 cm\(^3\) 0,010 mol/dm\(^3\) raztopine železovega(III) nitrata in 25 cm\(^3\) 0,010 mol/dm\(^3\) raztopine tiocianove kisline. V ravnotežni mešanici določimo koncentracijo tiocianatnega kompleksa \(32 \times 10^{-4}\) mol/dm\(^3\). Izračunajte ravnotežno konstanto reakcije, pri čemer upoštevajte, da je koncentracija vodikovih ionov 0,50 mol/dm\(^3\). Razložite, zakaj je potreben prebitek vodikovih ionov! Opišite, kako smo določili koncentracijo kompleksa!

Rezultat: 7,3

*20. Pripravimo mešanico iz 5,00 cm\(^3\) raztopine Fe(NO\(_3\))\(_3\) s koncentracijo \(1,00 \times 10^{-3}\) mol/dm\(^3\) in 5,00 cm\(^3\) raztopine HSCN s koncentracijo \(1,00 \times 10^{-3}\) mol/dm\(^3\). Končni volumen raztopine je 10,0 cm\(^3\). Koncentracija vodikovih ionov je konstantna, \([\text{H}^+] = 0,500\) mol/dm\(^3\). Ko se vzpostavi ravnotežje, s pomočjo kolorimetra izmerimo absorbanci, \(A = 0,0780\).

\[
\text{Fe}^{3+} + \text{HSCN} \rightleftharpoons [\text{FeSCN}]^{2+} + \text{H}^+
\]

a) S pomočjo umeritvene krivulje določite ravnotežno koncentracijo ionov \([\text{FeSCN}]^{2+}\)!

Graf: Absorbanci v odvisnosti od koncentracije FeSCN\(^{2+}\)

\[
A = (\varepsilon \cdot l) \cdot c = k \cdot c
\]

\(\lambda = 490\) nm

(modri filter)

<table>
<thead>
<tr>
<th>Koncentracija (10(^4) mol·L(^{-1}))</th>
<th>Absorbanci</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,054</td>
</tr>
<tr>
<td>4</td>
<td>0,088</td>
</tr>
<tr>
<td>6</td>
<td>0,134</td>
</tr>
<tr>
<td>8</td>
<td>0,190</td>
</tr>
<tr>
<td>10</td>
<td>0,249</td>
</tr>
<tr>
<td>12</td>
<td>0,312</td>
</tr>
<tr>
<td>14</td>
<td>0,378</td>
</tr>
<tr>
<td>16</td>
<td>0,432</td>
</tr>
<tr>
<td>20</td>
<td>0,564</td>
</tr>
</tbody>
</table>
b) Definirajte ravnotežno konstanto in napišite, od česa je odvisna!
c) Kakšne so ravnotežne množine in koncentracije Fe\(^{3+}\) in HSCN!
d) Izračunajte ravnotežno konstanto kemijske reakcije!

Rezultat: a) 2,90×10\(^{-5}\) mol/dm\(^3\); b) \(K_c = \frac{[FeSCN]^{2+} \times [H^+]}{[Fe^{3+}] \times [HSCN]}\); temperatura;
c) \(n(Fe^{3+}) = n(HSCN) = 4,7×10^{-6}\) mol; c\(([FeSCN]^{2+}) = c(HSCN) = 4,7×10^{-4}\) mol/dm\(^3\);
d) 65,4

*21. Neko ravnotežno reakcijo v tekoči fazi lahko napišemo takole:

\[
2 \ A + 4 \ B \rightleftharpoons C + 3 \ D
\]

diri čemer črke predstavljajo snovi, številke pa molska razmerja v omenjeni reakciji. Ali bi se sestava ravnotežne zmesi spremenila, če

a) bi ravnotežno mešanico segreli? Odgovor utemeljite!
b) bi dodali določen volumen inertnega topila (npr. H\(_2\)O)? Odgovor utemeljite!
c) V katerem primeru se tud spremeni vrednost ravnotežne konstante?

Rezultat: a) da; b) da; c) v primeru a)

*22. V 30 litrski posodi segrevamo zmes enega mola I\(_2\) in enega mola H\(_2\) do 448 °C. Nastaja HI. Ravnotežna konstanta \(K_c\) za reakcijo H\(_2\) + I\(_2\) \rightleftharpoons 2 HI je pri omenjeni temperaturi 50,0; vse snovi so v plinastem agregatnem stanju.

Izračunajte a) ravnotežno množino I\(_2\) in b) tlak v posodi, ko je zmes v ravnotežu (Pa)!

Rezultat: a) 0,22 mol; b) 4,0×10\(^5\) Pa

*23. Konstanta ravnotežja za reakcijo nastanka estra:

\[
CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O
\]

pri 25 °C je 4,0. Izračunajte ravnotežne koncentracije vseh komponent v omenjeni reakciji, če so bile začetne koncentracije le-teh 1,0 mol/dm\(^3\)!

Rezultat: \(c(CH_3COOH) = c(C_2H_5OH) = 0,67\) mol/dm\(^3\); \(c(CH_3COOC_2H_5) = c(H_2O) = 1,3\) mol/dm\(^3\)
TOPNOSTNI PRODUKT

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

* topnostni produkt \((K_{sp})^* \)

* topnost (s)

* ionski produkt

Osnovna vprašanja

1. Napišite urejene enačbe, ki ponazarjajo disociacijo naslednjih slabo topnih spojin: AgCl, PbI\(_2\), Ag\(_2\)S, As\(_2\)S\(_3\) in Ca\(_3\)(PO\(_4\))\(_2\). Napišite tudi formule, po katerih bi izračunali topnostne produkte naštetih spojin.

\[
\begin{align*}
\text{AgCl} & \rightleftharpoons \text{Ag}^+ + \text{Cl}^- & K_{sp} = [\text{Ag}^+][\text{Cl}^-] \\
\text{PbI}_2 & \rightleftharpoons \text{Pb}^{2+} + 2\text{I}^- & K_{sp} = [\text{Pb}^{2+}][\text{I}^-]^2 \\
\text{Ag}_2\text{S} & \rightleftharpoons 2\text{Ag}^+ + \text{S}^{2-} & K_{sp} = [\text{Ag}^+]^2[\text{S}^{2-}] \\
\text{As}_2\text{S}_3 & \rightleftharpoons 2\text{As}^{3+} + 3\text{S}^{2-} & K_{sp} = [\text{As}^{3+}]^2[\text{S}^{2-}]^3 \\
\text{Ca}_3(\text{PO}_4)_2 & \rightleftharpoons 3\text{Ca}^{2+} + 2\text{PO}_4^{3-} & K_{sp} = [\text{Ca}^{2+}]^3[\text{PO}_4^{3-}]^2 \\
\end{align*}
\]

2. Kako bi iz topnostnega produkta PbI\(_2\) izračunali topnost (mol/L) PbI\(_2\)?

Rešitev:

\[
\text{PbI}_2 \rightleftharpoons \text{Pb}^{2+} + 2\text{I}^-
\]

* Glej Uvod, str. 6.
3. Kolikšna je topnost PbI\(_2\) (v g/L) pri 25 °C, če je topnostni produkt pri tej temperaturi 8,3\(\times\)10^{-9} \text{mol}^3/L^3?

Rešitev:
\[\text{PbI}_2 \rightleftharpoons \text{Pb}^{2+} + 2\text{I}^- \]
\[K_{sp} = s \cdot (2s)^2 = 4s^3 \]
\[s = \sqrt[3]{\frac{K_{sp}}{4}} = c_{\text{nas. razt.}} \]

4. Izračunajte topnost svinčevega sulfata v vodi (v g/L in mol/L) pri sobni temperaturi, če je topnostni produkt PbSO\(_4\) v vodi pri 25 °C 1,3\(\times\)10^{-8} \text{mol}^2/L^2!

Rešitev:
\[\text{PbSO}_4 \rightleftharpoons \text{Pb}^{2+} + \text{SO}_4^{2-} \]
\[s = \sqrt{K_{sp}} = 1,14 \times 10^{-4} \text{mol/L} = c_{\text{nas. razt}} \]
\[\gamma_{\text{nas. razt}} = s \times M_{\text{PbSO}_4} = 1,14 \times 10^{-4} \text{mol/L} \times 303,262 \text{g/mol} = 0,035 \text{g/L} \]

Odg.: Topnost PbSO\(_4\) je pri sobni temperaturi 1,1\(\times\)10^{-4} \text{mol/L oziroma 0,035 g/L.}

5. Kolikšen je topnosti produkt Hg(OH)\(_2\) pri 20 °C, če je njegova topnost pri isti temperaturi 2,0\(\times\)10^{-4} \text{mol/L?}

Rešitev:
\[\text{Hg(OH)}_2 \rightleftharpoons \text{Hg}^{2+} + 2\text{OH}^- \]
\[s = 2s \quad s = 2,0 \times 10^{-4} \text{mol/L} \]
\[K_{sp} = \left[\text{Hg}^{2+} \right] \cdot \left[\text{OH}^- \right]^2 = s \cdot (2s)^2 = 4s^3 = 4 \times (2 \times 10^{-4})^3 (\text{mol/L})^3 = 32 \times 10^{-12} \text{mol}^3/L^3 = 3,2 \times 10^{-11} \text{mol}^3/L^3 \]
6. Topnostni produkt PbF₂ pri 25 °C je 2,80×10⁻⁸ mol³/L³. Izračunajte:
 a) molarno koncentracijo svinčevih ionov v nasičeni vodni raztopini PbF₂, pri 25 °C,
 b) molarno koncentracijo fluoridnih ionov v nasičeni vodni raztopini PbF₂, pri 25 °C,
 c) topnost PbF₂ (v mol/L), pri 25 °C,
 d) topnost PbF₂ (v g/L), pri 25 °C.

Rešitev:

$$s \implies Pb^{2+} + 2 F^- \quad M_{PbF_2} = 245,196 \text{ g/mol}$$

$$K_{sp} = [Pb^{2+}][F^-]^2 = 4 \cdot s^3$$

$$s = \sqrt[2]{\frac{K_{sp}}{4}} = 1,91 \times 10^{-3} \text{ mol/L}$$

$$[F^-] = 3,83 \times 10^{-3} \text{ mol/L}$$

$$[Pb^{2+}] = 1,91 \times 10^{-3} \text{ mol/L}$$

Molarna koncentracija svinčevih ionov v nasičeni vodni raztopini PbF₂ je 1,91×10⁻³ mol/L, koncentracija fluoridnih ionov je 3,83×10⁻³ mol/L.

Odg.: topnost PbF₂ je 1,91×10⁻³ mol/L oziroma 0,469 g/L (vse pri 25 °C).

7. Pri 25 °C je topnostni produkt svinčevega jodida 7,1×10⁻⁹ mol³/L³, topnostni produkt svinčevega sulfata pa 1,6×10⁻⁸ mol²/L². Katere soli lahko raztopimo več (izražno v gramih) v določenem volumnu topila!

Rezultat: PbI₂: saj velja, $$s_{PbI_2} = 0,56 \text{ g} \cdot \text{dm}^{-3} > s_{PbSO_4} = 0,038 \text{ g} \cdot \text{dm}^{-3}$$

8. Topnostni produkt bakrovega hidroksida pri 25 °C je 2,0×10⁻¹⁹ (mol·dm⁻³)³. Izračunajte topnost omenjenega hidroksida v mol·dm⁻³ in v g·dm⁻³!

Rezultat: 3,7×10⁻⁷ mol·dm⁻³; 3,6×10⁻⁵ g·dm⁻³

9. Kolikšen je topnostni produkt As₂S₃, če je v nasičeni raztopini te soli ugotovljena koncentracija S²⁻ ionov 2,5×10⁻⁶ mol·dm⁻³²?

Rezultat: 4,3×10⁻²⁹ mol⁵/L⁵
10. Topnost svinčevega bromida v vodi pri 25 °C je 7,89 g·dm⁻³! Izračunajte topnostni produkt omenjene soli!

Rezultat: 3,97×10⁻⁵ mol³/L³

11. 1,00 L nasičene vodne raztopine PbI₂ vsebuje 460 mg PbJ₂. Izračunajte K_{sp} za PbI₂!

Rešitev:

$$ s = \frac{\gamma_{nas.raz}}{M} = \frac{0,460 \text{ g} \times \text{mol}}{461,00 \text{ g} \times \text{L}} = 9,97830 \times 10^{-4} \text{ mol/L} = 9,98 \times 10^{-4} \text{ mol/L} $$

$$ \text{PbI}_2 = \text{Pb}^{2+} + 2 \text{I}^- $$

$$ K_{sp} = \left[\text{Pb}^{2+} \right] \left[\text{I}^- \right]^2 = 4 \cdot s^3 = 4 \times 9,9783 \times 10^{-12} \text{ mol}^3/\text{L}^3 = 3,98 \times 10^{-9} \text{ mol}^3/\text{L}^3 $$

Odg.: Topnostni produkt PbI₂ je 3,97×10⁻⁹.

12. V 500 mL nasičene vodne raztopine Ag₂SO₄ je 4,21 g Ag₂SO₄. Izračunajte topnostni produkt Ag₂SO₄ pri isti temperaturi!

Rezultat: 7,87×10⁻⁵

13. Topnostni produkt srebrovega klorida je 1,8×10¹⁰ (mol·dm⁻³)². Izračunajte koncentracijo srebrovih in kloridnih ionov v nasičeni raztopini!

Rezultat: $[\text{Ag}^+] = [\text{Cl}^-] = 1,3 \times 10^{-5} \text{ mol·dm}^{-3}$

14. Koliko L vode pri 20 °C potrebujemo, da raztopimo 5,00 g PbBr₂, če je njegov topnostni produkt pri tej temperaturi 9,00×10⁻⁶ mol³/L³? (Zanemarimo prispevek PbBr₂ k masi in k volumenu raztopine.)

Rešitev:

$$ s = \frac{s}{2s} = \frac{s}{s} = \frac{2s}{s} $$

$$ \text{PbBr}_2 = \text{Pb}^{2+} + 2\text{Br}^- $$

$$ M (\text{PbBr}_2) = 367,008 \text{ g/mol} $$

$$ K_{sp} = \left[\text{Pb}^{2+} \right] \left[\text{Br}^- \right]^2 = 4 \cdot s^3 \quad s = \sqrt[3]{\frac{K_{sp}}{4}} = 1,31 \times 10^{-2} \text{ mol/L} $$

Iz topnostnega produkta izračunamo molarno koncentracijo raztopljene soli pri nasičenju. Zdaj bo potrebno ugotoviti najmanjši volumen, v katerem bomo še raztopili 5,00 g PbBr₂, to pa bo takrat, ko bomo pripravili nasičeno raztopino. Velja torej:
\[
\begin{align*}
S_{Pb_2} &= \frac{n_{\text{PbBr}_2}}{V_{\text{RAZT.}}} = \frac{m_{\text{PbBr}_2}}{M_{\text{PbBr}_2} V_{\text{RAZT.}}} = \frac{5,00 \text{ g}}{1,31 \times 10^{-2} \text{ mol/L} \times 367,008 \text{ g/mol}} = 1,04 \text{ L} \\
V_{\text{RAZT.}} &= \frac{m_{\text{PbBr}_2}}{s_{\text{PbBr}_2} \times M_{\text{PbBr}_2}} = \frac{1,04 \text{ L} \times 1,31 \times 10^{-2} \text{ mol/L} \times 367,008 \text{ g/mol}}{1,0392 \times 10^{-8} \text{ mol/L}} = 5,00 \text{ g} \\
\end{align*}
\]

Odg.: Da raztopimo 5,00 g PbBr₂, potrebujemo najmanj 1,04 L vode.

15. Izračunaj, kolikšna je topnost CaCO₃ v vodi pri 20 °C v g/L, če znaša topnostni produkt CaCO₃ pri omenjeni temperaturi 1,6×10⁻⁸ mol²/L²!

Rezultat: 0,013 g/L

16. Topnostni produkt BaSO₄ pri 25 °C je 1,08×10⁻¹⁰ mol²/L². Koliko Ba²⁺ ionov je v 1 mL nasičene raztopine BaSO₄?

Rešitev:

\[
\begin{align*}
\text{BaSO}_4 & \rightleftharpoons \text{Ba}^{2+} + \text{SO}_4^{2-} \\
K_{sp} &= [\text{Ba}^{2+}] [\text{SO}_4^{2-}] = s^2 \\
s &= \sqrt{K_{sp}} = \sqrt{1,08 \times 10^{-10}} = 1,0392 \times 10^{-5} \text{ mol/L} = c_{nax., razt} \\
n_{\text{Ba}^{2+}} &= n_{\text{BaSO}_4} = c_{nax., razt} \times V = 1,0392 \times 10^{-5} \text{ mol/L} \times 10^{-3} \text{ L} = 1,04 \times 10^{-8} \text{ mol} \\
N_{\text{ionov}} &= N_A \times n_{\text{ionov v raztopini}} = 6,022137 \times 10^{23} \text{ delcev/mol} \times 1,04 \times 10^{-8} \text{ mol} = 6,26 \times 10^{15} \text{ delcev} \\
\end{align*}
\]

Odg.: V enem mL nasičene razt. BaSO₄ je 6,26×10¹⁵ ionov Ba²⁺.

17. Pri 25 °C vsebuje 1,00 dm³ nasičene raztopine 31,9 mg srebrovega karbonata, Ag₂CO₃. Izračunajte topnostni produkt te soli!

Rezultat: 6,19×10⁻¹² (mol·dm⁻³)³

18. Koncentracija srebrovih ionov je 4×10⁻⁴ mol·dm⁻³. Izračunaj koncentracijo sulfidnih ionov, S²⁻, v nasičeni raztopini srebrovega sulfida, če je topnostni produkt 6×10⁻⁵⁰ (mol·dm⁻³)³.

Rezultat: 4×10⁻⁴³ mol·dm⁻³
19. Topnostni produkt srebrovega kromata(VI) je $1,1 \times 10^{-12}$ (mol·dm$^{-3}$)3 pri 25 °C. Koliko miligramov soli je raztopljene v 100 mL nasičene raztopine?

Rezultat: 2,8 mg

20. Ali se pri mešanju 20 cm3vodne raztopine srebrovega nitrata(V), AgNO$_3$, s koncentracijo 0,1 mol·dm$^{-3}$ in 25 cm3 raztopine natrijevega sulfida, Na$_2$S, s koncentracijo 0,01 mol·dm$^{-3}$ obori težko topna sol srebrov sulfid? Trditev pojasni z računom (topnostni produkt srebrovega sulfida je 6×10^{-50} (mol·dm$^{-3}$)3)!

Rezultat: da, $[Ag^+]^2[S^2-] = 1 \times 10^{-5} >>> 6 \times 10^{-50}$

21. Po izparevanju 100 mL nasičene raztopine bakrovega sulfata do suhega preostane 109 mg trdnega preostanka, ki ne vsebuje vode. Izračunaj topnostni produkt omenjene soli!

Rezultat: $4,67 \times 10^{-5}$ (mol·dm$^{-3}$)2

22. Topnostni produkt svinčevega sulfata je $1,6 \times 10^{-8}$ (mol·dm$^{-3}$)2 pri 25 °C. Ali bomo pripravili nasičeno raztopino svinčevega sulfata, če nameravamo na 1,0 dm3 raztopine zatehtati 0,025 g omenjenega topljenca?

Rezultat: ne; saj velja: $\gamma_{\text{nast. PbSO}_4} = 0,0250 \text{ g·dm}^{-3} < \gamma_{\text{nast. PbSO}_4} = 0,038 \text{ g·dm}^{-3}$ oz. ionski produkt je v našem primeru $6,8 \cdot 10^{-9}$, kar je manj od $1,6 \cdot 10^{-8}$.

23. K 1,0 dm3 vodne raztopine natrijevega klorida s koncentracijo 0,100 mol·dm$^{-3}$ dodamo 1,0 dm3 vodne raztopine srebrovega nitrata(V) s koncentracijo 0,100 mol·dm$^{-3}$. Topnostni produkt srebrovega klorida je $1,8 \times 10^{-10}$ (mol·dm$^{-3}$)2. Koliko g oborine nastane pri reakciji?

Rezultat: 14 g

*24. Topnostni produkt CaCO$_3$ je $4,8 \times 10^{-9}$ mol2/L2 pri 25 °C. Ali izpade oborina, če pri sobni temperaturi zmešamo 150 mL 0,00001 M raztopine CaCl$_2$ in 400 mL 2,00×10^{-5} M raztopine Na$_2$CO$_3$? Predpostavimo additivnost volumnov.

Rešitev:
CaCO$_3$ \rightleftharpoons Ca$^{2+}$ + CO$_3^{2-}$

$K_v = \left[\text{Ca}^{2+}\right] \cdot \left[\text{CO}_3^{2-}\right] = 4,8 \times 10^{-9}$

$\left[\text{Ca}^{2+}\right]$: v 550 mL je $0,150 \times 10^{-4}$ mol Ca$^{2+}$
24. \[
\left[\text{CO}_3^{2-} \right]: \quad \text{v 550 mL je } 0,4 \times 2 \times 10^{-4} \text{ mol CO}_3^{2-}
\]
\[
\left[\text{Ca}^{2+} \right] \left[\text{CO}_3^{2-} \right] = 2,7272 \times 10^{-6} \text{ mol/L} \times 1,4545 \times 10^{-5} \text{ mol/L} = 3,97 \times 10^{-11} \text{ mol}^2/\text{L}^2
\]

Odg.: Oborina CaCO_3 se ne izloči, ker ionski produkt 3,97 \times 10^{-11} \text{ mol}^2/\text{L}^2 ne presega topnostnega produkta CaCO_3 (4,8 \times 10^{-9}).

25. V 1400 mL raztopine NaOH, ki ima pH 10, je raztopljeno 1,4 \times 10^{-18} \text{ molov Cr}^{3+} ionov. Izračunajte topnostni produkt Cr(OH)_3!

Rešitev:
\[
\text{Cr}^{3+} + 3 \text{ NaOH} \rightleftharpoons \text{Cr(OH)}_3 + 3 \text{ Na}^+
\]
\[
\text{Cr(OH)}_3 \rightleftharpoons \text{Cr}^{3+} + 3 \text{ OH}^-
\]
\[
\text{pH} = 10
\]
\[
\text{pOH} = 4
\]
\[
\left[\text{OH}^- \right] = 1 \times 10^{-4} \text{ mol/L}
\]
\[
\left[\text{Cr}^{3+} \right] = \frac{n_{\text{Cr}^{3+}}}{V_{\text{Cr}^{3+}}} = \frac{1,4 \times 10^{-18} \text{ mol}}{1,4 \text{ L}} = 1 \times 10^{-18} \text{ mol/L}
\]
\[
K_{sp} = \left[\text{Cr}^{3+} \right] \left[\text{OH}^- \right]^3 = 1 \times 10^{-18} \times 1 \times 10^{-12} = 1 \times 10^{-30} \text{ mol}^4/\text{L}^4
\]

Odg.: Topnostni produkt Cr(OH)_3 je 1 \times 10^{-30} \text{ mol}^4/\text{L}^4.

26. Topnostni produkt kalcijevega hidroksida je 5,5 \times 10^{-6} \text{ mol}^3/\text{L}^3 pri 25 ^\circ\text{C}. Kakšen je pH nasičene raztopine?

Rezultat: 12,3

27. Izračunaj topnostni produkt Zn(OH)_2 pri 25 ^\circ\text{C}, če je pH nasičene raztopine pri 25 ^\circ\text{C} 12,0!

Rezultat: 5 \times 10^{-7} \text{ mol}^3/\text{L}^3
28. Topnostni produkt svinčevega(II) hidroksida pri temperaturi 25,0 °C je 6,6×10⁻⁴ (mol·dm⁻³)³. Izračunaj pH nasičene raztopine svinčevega hidroksida pri tej temperaturi!

Rezultat: pH 13,04*

Topnost dveh ali več spojin s skupnim ionom

29. Topnostni produkt \(K_{sp}\) PbI₂ je pri 25 °C 7,10×10⁻⁹ mol³/L³. Izračunajte:
 a) molarno koncentracijo \(\Gamma\) v nasičeni vodni raztopini PbI₂ pri tej temperaturi
 b) molarno koncentracijo Pb²⁺ v nasičeni vodni raztopini PbI₂, ki vsebuje 6,20×10⁻² mol/L \(\Gamma\) ionov.

Rešitev:
\[
PbI_2 \rightleftharpoons Pb^{2+} + 2 \Gamma
\]

a) \(K_{sp} = [Pb^{2+}][\Gamma]^2 = 4 \cdot s^3 \quad s = \frac{\sqrt[3]{K_{sp}}}{4} = \frac{\sqrt[3]{7,10 \times 10^{-9} \text{mol}^3/\text{L}^3}}{4} = 1,21 \times 10^{-3} \text{mol/L}

b) \([Pb^{2+}] = \frac{7,10 \times 10^{-9}}{6,20 \times 10^{-2}} = 1,85 \times 10^{-6} \text{mol/L}

Odg.: Molarna koncentracija \(\Gamma\) v nasičeni raztopini PbI₂ je 2,42×10⁻³ mol/L pri 25 °C, molarna koncentracija Pb²⁺ pri koncentraciji \(\Gamma\) 6,20×10⁻² mol/L je 1,85×10⁻⁶ mol/L.

30. \(K_{sp}\) barijevega sulfata(VI) je 2,00×10⁻¹⁰ mol²/L². Kolikšna je koncentracija Ba²⁺ ionov, če v 1,00 L nasičene raztopine BaSO₄ dodamo 100 mL 5,00 M H₂SO₄?

Rešitev:
\[
K_{sp} = [Ba^{2+}][SO_4^{2-}] = s^2 \quad (s = 1,41 \times 10^{-5} \text{mol/L})
\]

\[
[SO_4^{2-}] = \frac{n_{SO_4^{2-}}}{V_{razt.}} = \frac{c_{H_2SO_4} \times V_{H_2SO_4}}{1,10 \text{L}} = \frac{5,00 \text{mol/L} \times 0,100 \text{L}}{1,10 \text{L}} = 0,455 \text{mol/L}
\]

V zgornjem računu smo zanemarili prispevek raztopljene soli k celotni koncentraciji SO₄²⁻ ionov, saj je \(s \ll c_{H_2SO_4}\)

\[
[\text{Ba}^{2+}] = \frac{K_{sp}}{[SO_4^{2-}]} = \frac{2,00 \times 10^{-10} \text{(mol/L)}^2}{0,455 \text{mol/L}} = 4,40 \times 10^{-10} \text{mol/L}
\]

Odg.: Koncentracija Ba²⁺ ionov v opisani raztopini je 4,40×10⁻¹⁰ mol/L.

* Glede števila mest glej opombo v Uvodu.
31. V čaši zmešaš nasičeni raztopini AgCl ($K_{sp} = 1,8 \times 10^{-10} \text{mol}^2/\text{L}^2$) in AgI ($K_{sp} = 8,5 \times 10^{-17} \text{mol}^2/\text{L}^2$). Ali se bo prej bistra raztopina začela motniti (znak za nastanek oborine)? Utemelji odgovor in pojasni, kaj se bo obarjalo v primeru, če bo raztopina postajala motna!

Rezultat: da, nastaja oborina AgI

32. Topnostni produkt kalcijevega bromida je $5,3 \times 10^{-9} \text{ (mol·dm}^{-3})^3$ pri 25 °C. Koliko mg soli je raztopljene v 10 dm3 raztopine bromovodikove kisline s koncentracijo 0,1 mol·dm$^{-3}$?

Rezultat: 1 mg

*33. Topnostni produkt kalcijevega sulfata(VI) je $2,6 \times 10^{-5} \text{ mol}^2/\text{L}^2$ pri 25 °C. Koliko g soli je raztopljene v 100 ml 0,0010 molarnih raztopine žveplove(VI) kisline? Pojasnite, zakaj morate v tem primeru za realen rezultat uporabiti enačbo $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$!

Rezultat: 0,063 g

*34. Pri 25 °C je v 100 ml raztopine klorovodikove kisline s koncentracijo 0,014 mol·dm$^{-3}$ raztopljeno 0,28 g svinčevega klorida. Izračunjte topnostni produkt te soli pri tej temperaturi?

Rezultat: $1,2 \times 10^{-5} \text{ (mol·dm}^{-3})^3$

Namig: koncentracijo $[\text{Pb}^{2+}]$ računamo iz topnosti PbCl$\text{}_2$, koncentracija $[\text{Cl}^{-}]$ je vsota prispevkov zaradi PbCl$\text{}_2$ in HCl.

Določitev topnostnega produkta svinčevega(II) jodida

35. Kako smo določili topnostni produkt PbI$\text{}_2$?

36. Zakaj smo potrebovali umiritveno krivuljo za kolorimetrično določanje I$\text{}_2$ pri določanju topnostnega produkta PbI$\text{}_2$?

37. Določamo topnostni produkt svinčevega(II) jodida. Ione Γ v 10 cm3 nasičene vodne raztopine PbI$\text{}_2$ oksidiramo v I$\text{}_2$ in tega ekstrahiramo v 25 mL CCl$\text{}_4$. Izmerimo absorbancio vijolične raztopine pri 550 nm: $A = 0,650$. Iz umiritvene krivulje odcitamo, da je $\gamma_{I_2} = 0,24 \text{ mg/mL} \text{ CCl}_4$. Koliki bi bili absorbanca in masna koncentracija I$\text{}_2$ v organski
fazi, če bi postopek začeli s 5,0 mL nasičene raztopine PbI₂ in bi ekstrahirali v 20 mL CCl₄?

Rešitev:
Med ekstrakcijo ves jod iz vodne faze ekstrahiramo v organsko fazo, torej velja, da je

\[
\gamma_{\text{I}_{2}\text{ vod. faza}} = \gamma_{\text{I}_{2}\text{ org. faza}} = \frac{V_{\text{org. faza}}}{V_{\text{vod. faza}}} = \frac{0,24 \text{ mg/mL} \times 25 \text{ mL}}{10 \text{ mL}} = 0,60 \text{ mg/mL}
\]

V drugem primeru, ko bi v analizi uporabili drugačen volumen vodne in organske faze, bi bila koncentracija I₂ v organski fazi naslednja:

\[
\gamma_{\text{I}_{2}\text{ org. faza}} = \frac{V_{\text{org. faza}}}{V_{\text{vod. faza}}} = \frac{0,60 \text{ mg/mL} \times 5,0 \text{ mL}}{20 \text{ mL}} = 0,15 \text{ mg/mL}
\]

Temu ustrezen manjša bi bila tudi absorbancija, saj velja, da je absorbancija sorazmerna s koncentracijo:

\[
A = k \times \gamma
\]

Velja torej:

\[
\frac{A_1}{A_2} = \frac{\gamma_1}{\gamma_2}, \quad A_2 = \frac{A_1 \times \gamma_2}{\gamma_1} = \frac{0,65 \times 0,15 \text{ mg/mL}}{0,24 \text{ mg/mL}} = 0,406^*
\]

Odg.: Absorbancija organske faze v drugem primeru je 0,406, koncentracija joda pa 0,15 mg/mL.

38. V 10,0 cm³ nasičene vodne raztopine PbI₂ dodamo raztopino NaNO₂ in nakisamo s HCl. Pri tem poteče naslednja reakcija. Uredite!

\[
\text{HNO}_2 + \text{H}^+ + \Gamma \rightarrow \text{I}_2 + \text{NO} + \text{H}_2\text{O}
\]

Odgovorite na dva sklopa vprašanj!

- Nastalo raztopino ekstrahiramo s 25 cm³ CCl₄. Določena koncentracija I₂ v organski fazi je 9,2×10⁻⁴ mol/dm³.
 a) Opisite barvo obeh faz pred ekstrakcijo in po končani ekstrakciji!
 b) Katere faze je v liju ločniku spodaj in zakaj?
 c) Izračunajte množino I₂ v organski fazi ter množini Pb²⁺ in Γ v 1 dm³ nasičene vodne raztopine PbI₂?
 d) Kakšni sta molarni koncentraciji Pb²⁺ in Γ v nasičeni vodni raztopini PbI₂?
 e) Izračunajte topnostni produkt PbI₂!

\[
* \text{Glede števila mest glej opombo v Uvodu.}
\]
Rezultat: a) $2 \ 2 \ 2 \ 1 \ 2 \ 2$; b) organska faza; gostota; c) $n_i = 2,3 \times 10^{-5}$ mol;
$n_{Pb^{2+}} = 2,3 \times 10^{-5}$ mol; $n_I^- = 4,6 \times 10^{-5}$ mol; d) $2,3 \times 10^{-3}$ mol/dm3; $4,6 \times 10^{-3}$ mol/dm3;
e) $4,9 \times 10^{-8}$ (mol·dm$^{-3}$)3

- Nastalo raztopino ekstrahiramo s 25,0 cm3 CCl4. Izmerjena absorbancija organske faze je 0,610.
 a) Napišite urejeno kemijsko reakcijo raztapljanja PbI$_2$ v vodi!
 b) Zakaj raztopini dodamo NaNO$_2$ in jo nakisamo s HCl?
 c) Kakšna je molarna koncentracija joda v organski fazi, če je naklon umeritvene krivulje (absorbancija proti molarni koncentraciji I$_2$) 668 dm3/mol?
 d) Izračunajte množino I$_2$ v organski fazi ter ravnotežno množino ionov Pb$^{2+}$ in I$^-$ v nasičeni raztopini PbI$_2$?
 e) Kakšni sta molarni koncentraciji ionov Pb$^{2+}$ in I$^-$ v nasičeni raztopini PbI$_2$?
 f) Izračunajte topnostni produkt PbI$_2$!
 g) Kako vpliva na topnost PbI$_2$ sol KI, ki je že raztopljena v raztopini?

Rezultat: a) Pb$_I$(s) \rightleftharpoons Pb$^{2+}$(aq) + 2 I$^-$ (aq); c) $9,13 \times 10^{-4}$ mol/dm3; d) $n_i = 2,28 \times 10^{-5}$ mol;
$n_{Pb^{2+}} = 2,28 \times 10^{-5}$ mol; $n_I^- = 4,57 \times 10^{-5}$ mol; e) $[\Gamma] = 4,57 \times 10^{-3}$ mol/dm3;
$[\text{Pb}^{2+}] = 2,28 \times 10^{-3}$ mol/dm3; f) $4,76 \times 10^{-8}$ (mol·dm$^{-3}$)3; g) raztopi se manj PbI$_2$

39. K 20 ml nasičene raztopine svinčevega jodida dodaš prebitno množino NaNO$_2$ in nekaj kapljic konc. HCl, da se ves I$^-$ pretvori v I$_2$. Nastali I$_2$ ekstrahiras s 30 ml CCl$_4$ v organsko fazo (predpostaviš, da ves jod preide v organsko fazo). Kakšen je topnostni produkt svinčevega jodida, če ima nastali I$_2$ raztopljen v CCl$_4$ absorbancio 0,90? $A = k \times c$;
k = 600 L/mol

Rezultat: $4,6 \times 10^{-8}$ (mol·dm$^{-3}$)3

Rezultat: da, manjši
HIDRATNO VEZANA VODA

Računanje odstotne elementarne sestave in količine vode v kristalohidratih

1. Izračunajte
 a) odstotno elementarno sestavo Na₂B₄O₇ · 10H₂O
 b) utežni procent vode v tem hidratu.

 Rešitev:
 \[M(\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O}) = 381,365 \text{ g/mol} \]
 \[2 \text{Na} = 2 \times \frac{22,990 \text{ g/mol}}{381,365 \text{ g/mol}} \times 100 = 12,06\% \]
 \[4 \text{B} = 4 \times \frac{10,811 \text{ g/mol}}{381,365 \text{ g/mol}} \times 100 = 11,34\% \]
 \[17 \text{O} = 17 \times \frac{15,999 \text{ g/mol}}{381,365 \text{ g/mol}} \times 100 = 71,32\% \]
 \[20 \text{H} = 20 \times \frac{1,0079 \text{ g/mol}}{381,365 \text{ g/mol}} \times 100 = 5,29\% \]

 V 1 molu (381,365 g) kristalohidrata je 10 molov (180,148 g) H₂O.

 utežni \% H₂O = masni \% H₂O = \frac{180,148 g}{381,365 g} \times 100 = 47,23\%

 Odg.: Utežni procent vode v kristalohidratu je 47,23\%.

2. Izračunaj število molekul vode, ki se sprostijo pri sušenju 10 g hidratiziranega MgSO₄ · 7H₂O do konstantne mase!

 Rezultat: \(1.7 \times 10^{23}\) molekul vode

3. Koliko gramov brezvodnega Na₂SO₄ dobimo pri segrevanju 20 g Na₂SO₄ · 10H₂O, če sulfat odda vso kristalno vodo? Kakšna je procentna sestava dobjenega brezvodnega natrijevega sulfata?

 Rešitev:
Množina Na\textsubscript{2}SO\textsubscript{4} je enaka pred segrevanjem in po njem, saj izpari le voda. Zato lahko zapišemo:

\[
n_{\text{soli}} = n_{\text{hidr. soli}} = \frac{m_{\text{soli}}}{M_{\text{soli}}} = \frac{m_{\text{hidr. soli}}}{M_{\text{hidr. soli}}}; \quad m_{\text{soli}} = \frac{m_{\text{hidr. soli}} \times M_{\text{soli}}}{M_{\text{hidr. soli}}} =
\]

\[
= \frac{20 \text{ g} \times 142,042 \text{ g/mol}}{322,190 \text{ g/mol}} = 8,8 \text{ g}
\]

Nalogo lahko rešimo tudi drugače

\[
M \left(\text{Na}_2\text{SO}_4 \cdot 10\text{ H}_2\text{O}\right) = (45,980 + 32,066 + 63,996 + 180,148) \text{ g/mol} = 322,190 \text{ g/mol}
\]

\[
322,190 \text{ g Na}_2\text{SO}_4 \cdot 10\text{ H}_2\text{O} \quad \text{vsebuje} \quad 180,148 \text{ g H}_2\text{O}
\]

\[
20 \text{ g Na}_2\text{SO}_4 \times 10\text{ H}_2\text{O} \quad \text{vsebuje} \quad \frac{180,148 \text{ g/mol}}{322,190 \text{ g/mol}} \times 20 \text{ g H}_2\text{O} = 11,2 \text{ g H}_2\text{O}
\]

Odg.: Iz 20 g Na\textsubscript{2}SO\textsubscript{4} · 10 H\textsubscript{2}O nastane pri sušenju 8,8 g Na\textsubscript{2}SO\textsubscript{4}.

\[
\%	ext{ Na} = 2 \times \frac{22,990 \text{ g/mol}}{142,042 \text{ g/mol}} \times 100 = 32,37 \%
\]

\[
\%	ext{ S} = 1 \times \frac{32,066 \text{ g/mol}}{142,042 \text{ g/mol}} \times 100 = 22,58 \%
\]

\[
\%	ext{ O} = 4 \times \frac{15,999 \text{ g/mol}}{142,042 \text{ g/mol}} \times 100 = 45,05 \%
\]

4. Koliko molov kristalne vode veže mol hidratiziranega CaCl\textsubscript{2}, če se pri sušenju masa zmanjša za 49,3 %?

Rešitev:

100 g kristalohidrata vsebuje 50,7 g CaCl\textsubscript{2} in 49,3 g H\textsubscript{2}O

\[
M \left(\text{CaCl}_2\right) = (40,078 + 70,906) \text{ g/mol} = 110,984 \text{ g/mol} \quad M \left(\text{H}_2\text{O}\right) = 18,0148 \text{ g/mol}
\]

\[
50,7 \text{ g brezvodnega CaCl}_2 \quad \text{veže} \quad \frac{49,3 \text{ g}}{18,0148 \text{ g/mol}} \text{ vode} = 2,74 \text{ mol H}_2\text{O}
\]

\[
(1 \text{ mol}) 110,984 \text{ g CaCl}_2 \quad \text{torej veže} \quad \frac{110,984 \times 2,74}{50,7} \text{ mol H}_2\text{O} = 6,00 \text{ mol H}_2\text{O}
\]

Odg.: Formula kristalohidrata je CaCl\textsubscript{2} · 6 H\textsubscript{2}O (1 mol CaCl\textsubscript{2} veže 6 mol H\textsubscript{2}O).

5. Na\textsubscript{2}CO\textsubscript{3} · 010 H\textsubscript{2}O segrevamo, da izgubi vso kristalno vodo. Izračunajte % natrija v spojini pred segrevanjem in po njem!
Rezultat: 16,1 % Na pred segrevanjem; 43,4 % Na po segrevanju.

6. Sušimo hidrat kalij-kromovega sulfata (KCr(SO\(_4\))\(_2\)). Pri sušenju se masa vzorca zmanjša za 43,2 %. Izračunajte formulo preiskovanega hidrata!

Rezultat: KCr(SO\(_4\))\(_2\) · 12 H\(_2\)O

7. Pri segrevanju kristalne sode se na račun izparele vode masa zmanjša na 37,0 % prvotne vrednosti. Koliko molov vode je vezano na mol brezvodnega natrijevega karbonata ter kakšen je utežni % kisika v kristalni sodi?

Rezultat: 10 molov; 72,7 %

8. Segrevaš 2,5 g hidratiziranega cinkovega sulfata. Čez čas segrevanje prekineš, substanco stehtaš in ugotoviš zmanjšanje mase za 25 %. Nato s segrevanjem nadaljuješ in sušiš do konstantne mase, ki znaša 1,4025 g. Napiši formulo hidratiziranega sulfata
 a) pred segrevanjem
 b) po začetnem segrevanju.

Rešitev: a) ZnSO\(_4\) · 7 H\(_2\)O; b) ZnSO\(_4\) · 3 H\(_2\)O
KISLINE IN BAZE I

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

- pH
- konstanta disociacije kisline (K_a)
- konstanta disociacije baze (K_b)
- stopnja disociacije ($\alpha = \frac{\text{št. disociiranih molekul}}{\text{št. vseh molekul}}$; glej nalogo 29.)

hidroliza

pufer

Osnovna vprašanja

1. Kaj je pH-meter, katero fizikalno količino z njim merimo? Kako pH-meter umerimo?

 Rezultat: primerjava s potenciometrom; odvisnost napetosti od sestave vzorca; uporaba puferov

2. Obkrožite trditve, ki lahko veljajo za bazično raztopino:
 a) $0 < \text{pH} < 7$
 b) $0 < \text{pOH} < 7$
 c) $[\text{H}_3\text{O}^+] = 1 \cdot 10^{-10} \text{ mol·dm}^{-3}$
 d) $[\text{OH}^-] = 1 \cdot 10^{10} \text{ mol·dm}^{-3}$
 e) $[\text{H}_3\text{O}^+] > [\text{OH}^-]$
 f) $[\text{H}_3\text{O}^+] < [\text{OH}^-]$
 g) $[\text{H}_3\text{O}^+] = 0,001 \text{ mol·dm}^{-3}$
 h) $[\text{OH}^-] = 0,001 \text{ mol·dm}^{-3}$

 Rezultat: b, c, f, h

3. Zakaj je pH 1 M HCl manjši od pH 1 M ocetne kisline?

 Rezultat: HCl – močna kislina, skoraj popolna disociacija; ocetna kislina – šibka kislina, delna disociacija; primerjava K_a in α

*Glej Uvod, predzadnji odstavek.
4. Katere kislina ima večjo konstanto disociacije, solna kislina ali ocetna kislina? Napišite enačbi, ki ponazarjata disociacijo obeh kislin v vodnih raztopinah, in napišite tudi formuli za izračun obeh konstant disociacije!

Rešitev:
\[\text{HCl} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{Cl}^- \]
\[\text{CH}_3\text{COOH} + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \]

\[K_{\text{HCl}} = \frac{[\text{H}_3\text{O}^+][\text{Cl}^-]}{[\text{HCl}]} \]
\[K_{\text{CH}_3\text{COOH}} \ll K_{\text{HCl}} \]

\[K_{\text{CH}_3\text{COOH}} = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]} \]

5. Kako bi razložili, da pH 0,1 M vodne raztopine HCl (ki je močna kislina) ni 1,0?

Rezultat: stopnja disociacije; primerjava aktivnosti in koncentracije

6. a) Razvrstite navedene spojine med kisline in baze: KOH, HCl, H\textsubscript{2}SO\textsubscript{4}, NH\textsubscript{3}, HNO\textsubscript{3}, NaOH, CH\textsubscript{3}CH\textsubscript{2}COOH!
b) Napišite kemijsko reakcijo, ki poteče med eno izmed navedenih spojin in vodo!
c) Katere izmed navedenih kislin je šibka kislina? Definirajte konstanto disociacije zanjo!

Rezultat: a) baza; kisl.; kisl.; baza; kisl.; baza; kisl.; c) CH\textsubscript{3}CH\textsubscript{2}COOH;

\[K_a = \frac{[\text{CH}_3\text{CH}_2\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{CH}_2\text{COOH}]} \]

a) V katero skupino spojin uvrščamo spojino X?
b) V katero skupino spojin uvrščamo spojino Y?
c) V katero skupino spojin uvrščamo spojino Z?
d) Kakšna je razlika med spojinama Y in Z?
e) Kaj dobimo, ko zmešamo enaki množini spojine X in Y?
f) Kaj dobimo, ko zmešamo spojino X z dvakratno množino spojine Z?

Rezultat: a) baza; b) kislina; c) kislina; d) Y = močna kislina, Z = šibka kislina; e) sol; f) pufer
Močne in šibke kisline in baze, pH, stopnja disociacije, konstanta disociacije

8. Ocenate ali izračunajte pH naslednjih 0,030 M vodnih raztopin:
 a) natrijevega sufata(VI)
 b) solne kisline
 c) kalijevega hidroksida
 d) žveplove(VI) kisline

Predpostavite, da so vsi topljenci popolnoma disociirani!

Rešitev:
 a) Na$_2$SO$_4$ → 2 Na$^+$ + SO$_4^{2-}$
 Na$_2$SO$_4$ je sol močne kisline in močne baze, raztopina soli je nevtralna, pH ≈ 7,00

b) HCl + H$_2$O → H$_3$O$^+$ + Cl$^-$
 pH = − log (3,0×10$^{-2}$) = 1,52

c) KOH → K$^+$ + OH$^-$
 pOH = − log (3,0×10$^{-2}$) = 1,52
 pH = 14 − 1,52 = 12,48

d) H$_2$SO$_4$ + 2 H$_2$O → SO$_4^{2-}$ + 2 H$_3$O$^+$
 pH = − log (2·3,0×10$^{-2}$) = 1,22

9. Izračunajte pH naslednjih 0,010 M vodnih raztopin! Predpostavite, da so vsi topljenci popolnoma disociirani (α = 1)!
 a) NaCl
 b) H$_2$SO$_4$
 c) KOH ali NaOH
 d) Ba(OH)$_2$
 e) HCl ali HNO$_3$

Rešitev:
 a) pH = 7; sol močne kisline in močne baze

 b) pH = − log [H$_3$O$^+$] = − log (2·0,010) = 1,7

 c) pH = 14 − pOH = 14 + log 0,01 = 14 − 2 = 12

 d) pH = 14 − pOH = 14 + log (2·0,010) = 14 − 1,7 = 12,3

 e) pH = − log [H$_3$O$^+$] = − log 0,010 = 2,0

10. Izračunajte pH naslednjih raztopin (pri T = 25 °C):
a) 0,0029 M HCl (\(\alpha = 1 \))
b) raztopine, ki vsebuje 1,0 g NaOH v 800 mL raztopine (\(\alpha = 1 \))

Rešitev:
a) \(\text{pH} = - \log \left[\text{H}_3\text{O}^+ \right] = - \log 0,0029 \)

\(\text{pH} = 2,54 \)

b) 800 mL raztopine vsebuje 1,0 g NaOH

1000 mL razt. vsebuje 1,25 g NaOH

1,25 g NaOH je 0,031 mol \(\left(n = \frac{1,25 g}{33,9969 g/mol} = 0,0313 \text{ mol} \right) \)

\(\Rightarrow [\text{OH}^-] = \frac{n}{V} = \frac{0,031 \text{ mol}}{1 \text{ dm}^3} = 0,0313 \text{ mol/dm}^3 \)

\(\text{pOH} = - \log [\text{OH}^-] = 1,51 \)

\(\text{pH} = 14,0 - \text{pOH} = 12,5 \)

11. Izračunajte pH 5,0\(\times \)10\(-3\) M raztopine NaOH, če predpostavimo popolno disociacijo!

Rešitev:

\(\text{pH} = 14 - \text{pOH} \)

\(\text{pOH} = - \log [\text{OH}^-] \)

\(\text{pOH} = - \log 0,0050 = 2,3 \)

\(\text{pH} = 14,0 - 2,3 = 11,7 \)

Odg.: pH 5,0\(\times \)10\(-3\) M raztopine NaOH je 11,7.

12. 25 mL 0,005 M raztopine žveplove(VI) kisline razredčiš z vodo na 500 mL. Izračunaj pH nastale raztopine, pri čemer predpostavi popolno disociacijo kisline!

Rezultat: 3,3

13. Izračunaj pH raztopine KOH (močna baza) s koncentracijo 0,0234 mol/L!

Rezultat: 12,37
14. Kolikšna je molarna koncentracija ionov OH\(^-\) v raztopini, ki ima pH = 2,3?

Rešitev:

\[\text{pOH} = 14 - 2,3 = 11,7 \Rightarrow -\log[\text{OH}^-] = -11,7 \]

\[[\text{OH}^-] = 10^{-11,7} = 2,00 \cdot 10^{-12} \text{ mol/L} \]

Odg.: Koncentracija ionov OH\(^-\) v raztopini s pH = 2,3 je 2,00 \(\times\) 10\(^{-12}\) mol/L.

15. Koliko g NaOH vsebuje 0,50 L vodne raztopine NaOH, ki ima pH 13? Predpostavimo popolno disociacijo.

Rešitev:

\[\text{pH} + \text{pOH} = 14 \]

\[\text{pH} = 13 \Rightarrow \text{pOH} = -\log[\text{OH}^-] = 1 \Rightarrow [\text{OH}^-] = 10^{-\text{pOH}} = 0,10 \text{ mol/dm}^3 \]

0,50 L raztopine vsebuje 0,050 mol NaOH \((n = c \cdot V = 0,10 \text{ mol/dm}^3 \cdot 0,50 \text{ L} = 0,050 \text{ mol})\), kar je \(m = n \cdot M = 0,050 \text{ mol} \times 39,9969 \text{ g/mol} = 2,0 \text{ g}\)

Odg.: Pol litra vodne raztopine NaOH s pH = 13 vsebuje 2,0 g NaOH.

16. Koliko 0,025 M raztopine lahko pripravite iz 20 g natrijevega hidroksida? Izračunajte pH raztopine, če je natrijev hidroksid močna baza!

Rezultat: 20 dm\(^3\); pH = 12,4

17. 2,0 g magnezijevega hidroksida raztopite v vodi in razredčite v merilni bučki do oznake pri 500 cm\(^3\). Izračunajte pH te raztopine, če predpostavite popolno disociacijo!

Rezultat: 13,1

18. Vodni raztopini kisline, ki ima pH = 5,0, dodamo toliko vode, da se volumen podvoji. Kakšen je pH tako razredčene raztopine, če predpostavimo, da se stopnja disociacije ni povečala?

Rešitev:

\[\text{pH} = 5,0 \Rightarrow [\text{H}_3\text{O}^+] = 1,0 \times 10^{-5} \text{ mol/dm}^3 \]

volumen podvojimo \(c_1 = \frac{c}{2}\)

\[c_1 = \frac{1}{2} \cdot 10^{-5} \text{ mol/dm}^3 = 5 \times 10^{-6} \text{ mol/dm}^3 \]
pH = \log (5 \cdot 10^{-6}) = 5,3

Odg.: pH razredčene raztopine je 5,3.

19. Kdaj je razlika v koncentraciji ionov H\(^+\) večja: če spremenimo pH od 3 na 4 ali od 7 na 8? Utemeljite odgovor!

Rešitev:

\[
\left[H_3O^+ \right]_{\text{pH=3}} = 1 \times 10^{-3} \text{ mol/dm}^3 \quad \left[H_3O^+ \right]_{\text{pH=4}} = 1 \times 10^{-4} \text{ mol/dm}^3
\]

\[
\Delta \left[H_3O^+ \right] = 1 \times 10^{-3} \text{ mol/dm}^3 - 1 \times 10^{-4} \text{ mol/dm}^3 = 9 \times 10^{-4} \text{ mol/dm}^3
\]

\[
\left[H_3O^+ \right]_{\text{pH=7}} = 1 \times 10^{-7} \text{ mol/dm}^3 \quad \left[H_3O^+ \right]_{\text{pH=8}} = 1 \times 10^{-8} \text{ mol/dm}^3
\]

\[
\Delta \left[H_3O^+ \right] = 1 \times 10^{-7} \text{ mol/dm}^3 - 1 \times 10^{-8} \text{ mol/dm}^3 = 9 \times 10^{-8} \text{ mol/dm}^3
\]

Odg.: Razlika v koncentracijah ionov H\(^+\) je večja v prvem primeru (sprememba pH iz 3 na 4).

20. V ločenih posodah je 1 L 0,02 M H\(_2\)SO\(_4\) in 0,5 L 0,04 M Ca(OH)\(_2\). Izračunajte pH po mešanju!

Rešitev:

H\(_2\)SO\(_4\) + Ca(OH)\(_2\) \rightarrow CaSO\(_4\) + 2 H\(_2\)O

V prvi posodi imamo 0,02 mola H\(_2\)SO\(_4\) (n = c \cdot V = 0,02 mol/dm\(^3\) \cdot 1 dm\(^3\) = 0,02 mol), v drugi posodi pa imamo 0,02 mola Ca(OH)\(_2\) (n = 0,04 mol/dm\(^3\) \cdot 0,5 dm\(^3\) = 0,02 mol). Ko raztopini zmešamo, poteče navedena reakcija, kjer H\(_2\)SO\(_4\) in Ca(OH)\(_2\) reagirata v razmerju 1 : 1. Pri tem v raztopini nobeden izmed reagentov ne ostane v prebitku, kar pomeni, da je nastala raztopina nevtralna; pH take raztopine je 7.

21. Raztopino HCl s pH = 3,0 zmešamo z raztopino HCl s pH = 4,0 v razmerju 1:1. Izračunajte pH tako dobljene raztopine, če predpostavite popolno disociacijo (\(\alpha\) = 1) in aditivnost prostornin!

Rešitev:

raztopina A \quad \text{pH} = 3,0; \ \alpha = 1 \quad \Rightarrow \left[H_3O^+ \right] = 10^{-pH} = 1,0 \times 10^{-3} \text{ mol/dm}^3

raztopina B \quad \text{pH} = 4,0; \ \alpha = 1 \quad \Rightarrow \left[H_3O^+ \right] = 10^{-pH} = 1,0 \times 10^{-4} \text{ mol/dm}^3
Mešanica 1 L raztopine A in 1 L raztopine B vsebuje 0,0011 mola HCl \((1,0 \times 10^{-3} \text{ mol} + 1,0 \times 10^{-4} \text{ mol})\) v 2 L raztopine (aditivnost prostornin), torej je koncentracija HCl 0,00055 mol/dm³.

\[
\left[\text{HCl} \right] = \left[\text{H}_2\text{O}^+ \right] = \frac{n}{V} = \frac{0,0011 \text{ mol}}{2 \text{ L}} = 0,00055 \text{ mol/dm}^3
\]

\[
\text{pH} = -\log 0,00055 = 3,3
\]

Odg.: Raztopina HCl, ki jo pripravimo iz enakih delov raztopin HCl s pH = 3,0 in pH = 4,0, ima pH = 3,3.

22. Izračunajte pH raztopine, ki nastane, če 1,0 g NaOH in 1,0 g KOH raztopimo v 0,50 dm³ vode. Predpostavite popolno disociacijo topljenca in zanemarite spremembe prostornine pri raztapljanju!

Rešitev:

1,0 g KOH je \(\frac{1,0 \text{ g}}{56,1049 \text{ g/mol}} = 0,0178 \text{ mol}\)

1,0 g NaOH je \(\frac{1,0 \text{ g}}{39,9969 \text{ g/mol}} = 0,0250 \text{ mol}\)

1,0 g KOH + 1,0 g NaOH je 0,0428 mola OH⁻ \((0,0178 \text{ mol} + 0,0250 \text{ mol})\) v 0,50 dm³

v 1,0 dm³ je 0,0856 mola OH⁻ \(\left[\text{OH}^- \right] = \frac{0,0428 \text{ mol}}{0,500 \text{ dm}^3} = 0,0856 \text{ mol/dm}^3\)

\[
\text{pOH} = -\log [\text{OH}^-] = -\log 0,0856 = 1,07
\]

\[
\text{pH} = 14 - \text{pOH} = 14 - 1,07 = 12,93
\]

Odg.: Tako pripravljena raztopina ima pH 12,9.

23. Izračunajte pH raztopine, ki jo pripravimo z mešanjem 100 cm³ raztopine žveplove(VI) kisline s koncentracijo 0,020 mol·dm⁻³ in 100 cm³ raztopine natrijevega hidroksida s koncentracijo 0,050 mol·dm⁻³. Volumen raztopine po mešanju je 200 cm³. Predpostavite popolno disociacijo.

Rezultat: 11,7

24. Kolikšna je vrednost pH \(2,0 \times 10^{-4} \text{ M}\) raztopine NaOH, če predpostavimo popolno disociacijo? Za koliko se spreminijo pH, če je disociacija le 80 %? Je pH v tem primeru večji ali manjši (utemeljite odgovor!)?
Rešitev:

\[
pOH = - \log (\alpha \cdot c)
\]

\[
pOH (\alpha = 1) = - \log (2,0 \cdot 10^{-4}) = 3,70 \quad \text{pH} = 14,0 - 3,7 = 10,3
\]

\[
pOH(\alpha = 0,8) = - \log(0,8 \cdot 2 \cdot 10^{-4}) = 3,80 \quad \text{pH} = 14,0 - 3,8 = 10,2
\]

\[
\Delta \text{pH} = 10,3 - 10,2 = 0,1
\]

Odg.: Pri popolni disociaciji je pH 2,0\times10^{-4} M raztopine 10,3, če disociacija ni popolna, je raztopina bolj kisla (manj bazična), pH je manjši za 0,1.

25. Izračunajte pH 2\times10^{-3} M raztopine močne diprotične kisline, če upoštevamo, da je v raztopini le 90 % vodikovih ionov, ki bi jih vsebovala raztopina pri popolni disociaciji kisline!

Rešitev:
Vsaka molekula kisline lahko odda 2 iona H\(^+\), zato bi bila koncentracija H\textsubscript{3}O\(^+\) ionov pri popolni disociaciji 2\times2,0\times10^{-3} M.

\[
\text{pH} = - \log \left(\text{H}_3\text{O}^+\right)
\]

\[
\text{pH} = - \log \left(\alpha \cdot c\right) = - \log \left(0,90 \times 2 \times 2,0 \times 10^{-3}\right) = 2,4
\]

Odg.: pH 2\times10^{-3} M raztopine močne diprotične kisline, ki vsebuje 90 % teoretično možnih H\textsubscript{3}O\(^+\) ionov, je 2,4.

26. Izračunajte pH 0,010 M raztopine H\textsubscript{2}SO\(_4\), če je stopnja disociacije 90 % (\alpha = 0,90)!

Rešitev:

\[
\left[\text{H}_3\text{O}^+\right] = 2 \cdot \alpha \cdot c = 2 \cdot 0,90 \cdot 0,010 \text{ mol/dm}^3 = 0,018 \text{ mol/dm}^3
\]

\[
\text{pH} = - \log \left[\text{H}_3\text{O}^+\right] = - \log \left(0,02 \cdot 0,9\right) = - \log 0,018 = 1,74
\]

Odg.: pH 0,010 M H\textsubscript{2}SO\(_4\) pri stopnji disociacije 0,90 je 1,74.

27. Koliko ionov H\textsubscript{3}O\(^+\) vsebuje 1,0 mL 0,010 M raztopine HCl, če predpostavimo, da je stopnja disociacije 0,80 (\alpha = 0,80)?

Rešitev:

\[
1 \text{ mL } 0,010 \text{ M razt. HCl vsebuje (pri } \alpha = 0,80) \ 8 \cdot 10^{-6} \text{ mol H}_3\text{O}^+ (n = \alpha \cdot c \cdot V = \\
= 0,80 \cdot 0,010 \text{ mol/dm}^3 \cdot 1,0 \cdot 10^{-3} \text{ dm}^3 = 8,0 \cdot 10^{-6} \text{ mol})
\]
število \(H_3O^+ \) ionov = \(8,0 \cdot 10^{-6} \) mol \(\cdot \) \(6,022137 \cdot 10^{-23} \) delcev/mol = \(4,8 \cdot 10^{18} \) delcev

Odg.: 1 mL 0,010 M raztopine HCl vsebuje (pri \(\alpha = 0,80 \)) \(4,8 \cdot 10^{18} \) ionov \(H_3O^+ \).

28. V dveh čašah imamo pripravljeni 0,010 M raztopini: v prvi je klorovodikova kislina (popolna disociacija) in v drugi ocetna kislina (\(\alpha = 4,3 \% \)).
 a) Katera raztopina je bolj kisla? Utemeljite!
 b) Katera raztopina ima večji pH? Utemeljite!
 c) Izračunajte pH obeh raztopin!

Rezultat: a) HCl; b) ocetna kislina; c) 2,0; 3,4

29. Koncentracija monoprotične kisline (HX) je 8,9 mol/L, pH = 4. Kolikšna je stopnja disociacije?

Rešitev:
\[
\alpha = \frac{[H_3O^+]}{c} = \frac{1,0 \cdot 10^{-4} \text{mol/dm}^3}{8,9 \text{mol/dm}^3} = 1,1 \cdot 10^{-5}
\]

Odg.: Stopnja disociacije je 1,1\(\times \)10\(^{-5} \).

30. Pripravljeno imamo vodno raztopino CH\(_3\)COOH s koncentracijo 0,1 mol/dm\(^3\).
 a) Kako iz navedene raztopine pripravimo 100 cm\(^3\) raztopine s koncentracijo 0,01 mol/dm\(^3\)?
 b) Prvi raztopini (s koncentracijo 0,1 mol/dm\(^3\)) izmerimo pH = 3. Izračunajte koncentracijo oksonijevih ionov v tej raztopini!
 c) Izračunajte stopnjo disociacije kisline (\(\alpha \)) v navedeni (b) raztopini!

Rezultat: a) 10 mL razredčimo na 100 mL; b) 0,001 mol/dm\(^3\); c) 1 %

31. pH raztopine monoprotične kisline je 4,0, njena molarna koncentracija pa 0,257 mol/dm\(^3\). Izračunajte stopnjo disociacije in konstanto disociacije! Kako vpliva na eno in drugo izračunano vrednost povečanje koncentracije kisline?

Rešitev:
\[
\text{HA} + H_2O \rightleftharpoons H_3O^+ + A^-
\]
\[
\text{pH} = 4,0 \Rightarrow [H_3O^+] = 10^{-\text{pH}} = 1,00 \times 10^{-4} \text{mol/dm}^3
\]
c = 0,257 mol/dm³

$$\alpha = \frac{[H_2O^+]}{c} = \frac{1,00\times10^{-4} \text{ mol/dm}^3}{0,257 \text{ mol/dm}^3} = 3,89\times10^{-4}$$

$$K_a = \frac{\frac{[H_3O^+]}{[A^-]}\cdot\frac{[A^-]}{[HA]}}{c\cdot(1-\alpha)} = c\cdot\alpha^2 \ (\text{za } \alpha<<1)$$

$$K_a = c\cdot\alpha^2 = 0,257\cdot(3,89\times10^{-4})^2 = 3,89\times10^{-8}$$

ali izračunano na drug način:

$$K_a = \frac{1,00\times10^{-4}\cdot1,00\times10^{-4}}{0,257-1,00\times10^{-4}} = 3,89\times10^{-8}$$

Odg.: Stopnja disociacije za opisano kisline je 3,89\times10^{-4} (se zmanjšuje ob povečanju koncentracije kisline), konstanta disociacije je 3,89\times10^{-8} (koncentracija kisline nanjo ne vpliva).

32. Stopnja disociacije metanojske kisline (HCOOH) v vodni raztopini s koncentracijo 0,050 mol·dm⁻³ je 5,8 %. Koliko znaša konstanta disociacije omenjene kisline?

Rezultat: 1,8 \times 10^{-4}

Opomba: Pri tej nalogi moramo v imenovalcu formule za K_a upoštevati $c\cdot(1-\alpha)$ in ne le c, saj ne velja $\alpha<<1$ (glej izpeljavo v nalogi 31)!

33. Izračunaj konstanto disociacije 0,010 M raztopine ocetne kisline, če veš, da je pri teh pogojih le 4,2 % kisline disociiralo!

Rezultat: 1,8\times10^{−5}

Opomba: Glej opombo nal. 32.

34. pH 0,010 M raztopine monobazne (ali monoprotične) kisline A je 3,1, pH 0,010 M monobazne kisline B pa je 5,3. Katera kisлина je bolj disociirana? Izračunajte koncentracijo ionov H₂O⁺ za vsako raztopino, stopnjo disociacije za vsako raztopino ter konstanto disociacije za kisline A in konstanto disociacije za kisline B! Kolikšen bi bil pH raztopin obeh kislin ob popolni disociaciji?

Rešitev:
Bolj disociirana je kisлина A, ki ima manjši pH: večja disociacija pomeni več (večji delež) disociiranih delcev (ionov H⁺) v raztopini in posledično manjši pH.
A

<table>
<thead>
<tr>
<th>(c = 0,01 \text{ mol} \cdot \text{dm}^{-3})</th>
<th>(\text{pH} = 3,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left[\text{H}_3\text{O}^+ \right] = 10^{-3,1} = 7,9 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3})</td>
<td>(\alpha = \frac{7,94 \times 10^{-4} \text{ mol/dm}^3}{0,010 \text{ mol/dm}^3} = 7,9 \times 10^{-2})</td>
</tr>
<tr>
<td>(K_a^* = \frac{(7,94 \times 10^{-4} \text{ mol/dm}^3)^2}{(0,010 - 7,94 \times 10^{-4}) \text{ mol/dm}^3} = 6,9 \times 10^{-5})</td>
<td>(\text{pH}\left(\alpha = 1\right) = -\log(0,010) = 2,0)</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>(c = 0,01 \text{ mol} \cdot \text{dm}^{-3})</th>
<th>(\text{pH} = 5,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left[\text{H}_3\text{O}^+ \right] = 10^{-5,3} = 5,0 \times 10^{-6} \text{ mol} \cdot \text{dm}^{-3})</td>
<td>(\alpha = \frac{5,01 \times 10^{-6} \text{ mol/dm}^3}{0,010 \text{ mol/dm}^3} = 5,01 \times 10^{-4})</td>
</tr>
<tr>
<td>(K_a^* = \frac{(5,01 \times 10^{-6} \text{ mol/dm}^3)^2}{(0,010 - 5,01 \times 10^{-6}) \text{ mol/dm}^3} = 2,5 \times 10^{-9})</td>
<td>(\text{pH}\left(\alpha = 1\right) = -\log(0,010) = 2,0)</td>
</tr>
</tbody>
</table>

*Če računamo s koncentracijami, ima konstanta \(K_a\) enote mol/dm³. Glede enot pri termodinamskih konstantah glej tudi predzadnji odstavek v Uvodu.

35. Raztopini šibke kisline s koncentracijo 0,10 mol·dm⁻³ smo določili pH 3,6. Izračunajte konstanto disociacije te kisline in stopnjo disociacije!

Rezultat: \(K_a = 6,3 \times 10^{-7}\), \(\alpha = 0,25\%\)

36. pH vodne raztopine metanojske kisline (HCOOH) s koncentracijo 0,050 mol·dm⁻³ je 2,54. Koliko znaša konstanta disociacije omenjene kisline?

Rezultat: \(1,8 \times 10^{-4}\)

Opomba: Glej opombo nal. 32.

37. Kolikšen je pH 1,0 M vodne raztopine HCN, če je vrednost konstante disociacije za reakcijo \(\text{HCN} + \text{H}_2\text{O} \rightleftharpoons \text{CN}^- + \text{H}_3\text{O}^+ \rightleftharpoons 7,9 \times 10^{-10}\)?

Rešitev:

\[
\text{HCN} + \text{H}_2\text{O} \rightleftharpoons \text{CN}^- + \text{H}_3\text{O}^+ \\
1 - x \quad x \quad x
\]

koncentracija snovi v ravnotežju

\[
K_a = \frac{\left[\text{H}_3\text{O}^+ \right] \cdot \left[\text{CN}^- \right]}{\left[\text{HCN} \right]} = \frac{x^2}{1-x}
\]

Glede na to, da je konstanta disociacije majhna, lahko spremembo koncentracije HCN zanemarimo in za nadaljnji izračun uporabimo kar začetno koncentracijo te kisline.
\[K_a \cdot [HCN] = x \cdot x = x^2 \Rightarrow x = \sqrt{K_a \cdot [HCN]} \]

\[x = \sqrt{7,9 \times 10^{-10} \text{ mol/dm}^3 \times 1,0 \text{ mol/dm}^3} = 2,8 \times 10^{-5} \text{ mol/dm}^3 \]

\[x = \left[H_3O^+ \right], \ pH = -\log \left[H_3O^+ \right], \ \text{pH} = -\log (2,8 \times 10^{-5}) = 4,6 \]

Odg.: pH 1,0 M vodne raztopine HCN je 4,6.

38. Konstanta disociacije metanojske kisline (HCOOH) je 1,78\(\times 10^{-4} \). Koliko znaša pH 0,050 molarne vodne raztopine metanojske kisline?

Rezultat: 2,5

39. Konstanta disociacije šibke kisline, HA, je 1,70\(\times 10^{-5} \). Zračunajte pH ter koncentraciji \([A^-]\) in \([HA]\) v 0,100 M raztopini!

Rezultat: pH = 2,9, \([A^-]\) = 1,3\(\times 10^{-3}\), \([HA]\)=0,099\text{mol}\cdot\text{dm}^{-3}

40. Izračunajte pH raztopine, ki jo dobimo, če 2,0 g čiste ocetne kisline razredčimo na 250 mL. Konstanta disociacije je 1,76\(\times 10^{-5} \)!

Rezultat: 2,8

41. Izračunajte pH raztopine ocetne kisline s koncentracijo 0,010 mol\cdot dm^{-3}, če je p\(K_a \) = 4,76. S katerim instrumentom bi izmerili pH te raztopine, kako bi inštrument pripravili za merjenje? Kaj je čutilo pri tem inštrumentu in katero fizikalno veličino merimo, ko ga uporabljamo?

Rezultat: 3,4; pH-meter s kombinirano elektrodo

42. Jabolčni kis, ki ga uporabljamo za pripravo solate, vsebuje 4,23 % (masni delež) ocetne kisline. Izračunaj pH tega kisa, če je gostota le-tega 1,001 g/cm\(^3\). \(K_a \) ocetne kisline je 1,76\(\times 10^{-5} \)!

Rezultat: 2,5

43. Izračunaj pH 3,45 % (masni delež) raztopine amoniaka z gostoto 0,982 g/cm\(^3\).

\(K_b = 1,76 \times 10^{-5}\).

Rezultat: 11,8
44. Izračunajte pH raztopine amoniaka z masnim deležem topljenca 0,33 % (gostota raztopine 1,043 g·cm\(^{-3}\)), če je \(pK_b = 4,74\). Kako bi izmerili pH te raztopine?

Rezultat: 11,3; pH-meter s kombinirano elektrodo
Opomba: \([OH^-]\) računamo iz kvadratne enačbe s tremi členi!

45. Kakšna mora biti koncentracija vodne raztopine ocetne kisline, da je koncentracija vodikovih ionov \(3,5\times10^{-4}\) mol·dm\(^{-3}\)? (\(K_a = 1,8\times10^{-5}\))

Rezultat: \(7,2 \times 10^{-3}\) mol·dm\(^{-3}\)

*46. Napišite, katere zvrsti in v kakšnih koncentracijah so prisotne v vodni raztopini metilamina (CH\(_3\)NH\(_2\)), če je koncentracija raztopine 0,010 mol·dm\(^{-3}\) in je \(K_b = 5,0\times10^{-4}\).

Rezultat: \([OH^-] = [CH_3NH_3^+] = 0,0020\) mol·dm\(^{-3}\), \([CH_3NH_2] = 0,0080\) mol·dm\(^{-3}\)

*47. Topnostni produkt magnezijevega hidroksida je \(1,8\times10^{-11}\). Izračunajte pH nasičene vodne raztopine magnezijevega hidroksida, če je le-ta močna baza!

Rezultat: 10,5

48. Izračunajte pH raztopine, ki jo dobimo, če zmešamo 100 cm\(^3\) vodne raztopine šibke kisline s koncentracijo 0,0500 mol/dm\(^3\) in 10 cm\(^3\) vodne raztopine natrijevega hidroksida s koncentracijo 0,100 mol/dm\(^3\)! (\(pK_a\) kisline je 4,20.)

Rešitev:
Pri reakciji 0,00500 mol šibke kisline (HA) in 0,0010 mol natrijevega hidroksida poteka delna nevtralizacija kisline. Po nevtralizaciji imamo v raztopini 0,0040 mol kisline in 0,0010 mol natrijeve soli. Pri mešanju tako razredčenih raztopin so volumeni aditivni, torej je volumen mešanice 110 cm\(^3\), označimo ga z \(V_p\).
Zmesi šibkih kislin in njenih konjugiranih baz oz. soli teh šibkih kislin z močno bazo so pufrs. Torej pri mešanju v tej nalogi navedenih množin kisline in baze nastane pufrska zmes. pH pufrske zmesi računamo na osnovi poznavanja enačbe disociacije in konstante disociacije šibke kisline:

\[
HA + H_2O \rightleftharpoons A^- + H_3O^+
\]

\[
K_a = \frac{[A^-][H_3O^+]}{[HA]}
\]

Računamo pH oz. \([H_3O^+]\):
\[
\left[H_3O^+ \right] = K_a \cdot \left[\frac{HA}{A^-} \right]
\]

Enačbo pretvorimo v logaritemsko obliko tako, da uporabimo operator p (\(-\log\)):

\[
pH = pK_a - \log \left[\frac{HA}{A^-} \right]
\]

Pri računu upoštevamo dve predpostavki in sicer, da je koncentracija nedisociirane kisline, [HA] enaka koncentraciji kisline, ki ni reagirala z NaOH \((c_k)\) in koncentracija disociirane oblike kisline, \([A^-]\) kar koncentraciji soli, ki je nastala pri delni nevtralizaciji \((c_s)\).

\[
\left[H_3O^+ \right] = K_a \cdot \frac{c_k}{c_s}
\]

ali v logaritemski obliki (Henderson-Hasselbachova enačba):

\[
pH = pK_a - \log \frac{c_k}{c_s}
\]

\[
pH = pK_a - \log \frac{n_k \cdot V_p}{n_s \cdot V_p} = 4,20 - \log \frac{0,0040 \text{ mol}}{0,0010 \text{ mol}} = 3,60
\]

Rezultat: pH = 3,6

49. \(K_b\) za amoniak je \(1,8 \times 10^{-5}\). Koliko \(cm^3\) raztopine amonijevega klorida s koncentracijo 0,10 mol·dm\(^{-3}\) moramo dodati k \(100 cm^3\) raztopine amoniaka z enako koncentracijo, da je pH raztopine 10!

Rezultat: 18 cm\(^3\)

Opomba: Predpostavke so enake kot v rešeni nalogi 48.

*50. K 200 cm\(^3\) raztopine dušikove(III) kisline s koncentracijo 0,10 mol·dm\(^{-3}\) dodamo 50 cm\(^3\) raztopine natrijevega hidroksida s koncentracijo 0,15 mol·dm\(^{-3}\). Kakšen je pH mešanice, če je konstanta disociacije šibke kisline \(4,5 \times 10^{-4}\)?

Rezultat: 3,12

Opomba: Predpostavke so enake kot v rešeni nalogi 48.
Hidroliza soli (Protolitske reakcije soli)

51. Napišite enačbe, ki ponazarjajo hidrolizo, tj. protolitske reakcije v vodnih raztopinah natrijevega acetata, cinkovega klorida, bakrovega(II) klorida, amonijevega klorida, cinkovega sulfata(VI), bakrovega(II) sulfata(VI), amonijevega sulfata(VI), natrijevega karbonata, amonijevega nitrata(V), natrijevega cianida in kalijevega sulfida; pod vsako enačbo napišite, ali je vodna raztopina nevtralna, kisla ali bazična!

Rešitev:
Natrijev acetat (CH$_3$COONa)

$\text{CH}_3\text{COO}^- + \text{Na}^+ + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COOH} + \text{Na}^+ + \text{OH}^-$

oz. $\text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+ \rightleftharpoons \text{CH}_3\text{COOH} + \text{H}_2\text{O}$

raztopina je bazična

Cinkov klorid (ZnCl$_2$)

$\text{Zn}^{2+} + 2 \text{Cl}^- + 4 \text{H}_2\text{O} \rightleftharpoons \text{Zn(OH)}_2 + 2 \text{H}_3\text{O}^+ + 2 \text{Cl}^-$

oz. $\left[\text{Zn(H}_2\text{O)}_4\right]^{2+} \rightleftharpoons \left[\text{Zn(OH)(H}_2\text{O)}_3\right]^+ + \text{H}_3\text{O}^+$

raztopina je kisla

Bakrov(II) klorid (CuCl$_2$)

$\text{Cu}^{2+} + 2 \text{Cl}^- + 4 \text{H}_2\text{O} \rightleftharpoons \text{Cu(OH)}_2 + 2 \text{H}_3\text{O}^+ + 2 \text{Cl}^-$

oz. $\left[\text{Cu(H}_2\text{O)}_5\right]^{2+} \rightleftharpoons \left[\text{CuOH(H}_2\text{O)}_4\right]^+ + \text{H}_3\text{O}^+$

raztopina je kisla

Amonijev klorid (NH$_4$Cl)

$\text{NH}_4^+ + \text{Cl}^- + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{Cl}^- + \text{H}_3\text{O}^+$

oz. $\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+$

raztopina je kisla

Cinkov sulfat(VI) (ZnSO$_4$)

$\text{Zn}^{2+} + \text{SO}_4^{2-} + 4 \text{H}_2\text{O} \rightleftharpoons \text{Zn(OH)}_2 + \text{SO}_4^{2-} + 2 \text{H}_3\text{O}^+$

oz. kot za cinkov klorid

raztopina je kisla

Bakrov(II) sulfat(VI) (CuSO$_4$)

$\text{Cu}^{2+} + \text{SO}_4^{2-} + 4 \text{H}_2\text{O} \rightleftharpoons \text{Cu(OH)}_2 + \text{SO}_4^{2-} + 2 \text{H}_3\text{O}^+$

oz. kot za bakrov(II) klorid

raztopina je kisla

Amonijev sulfat(VI) ((NH$_4$)$_2$SO$_4$)

$2 \text{NH}_4^+ + \text{SO}_4^{2-} + 2 \text{H}_2\text{O} \rightleftharpoons 2 \text{NH}_3 + \text{SO}_4^{2-} + 2 \text{H}_3\text{O}^+$

oz. kot za amonijev klorid

raztopina je kisla

Natrijev karbonat (Na$_2$CO$_3$

$2 \text{Na}^+ + \text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons 2 \text{Na}^+ + \text{HCO}_3^- + \text{OH}^-$
oz. $\text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{OH}^-$

raztopina je bazična

Amonijev nitrat(V) (NH_4NO_3)

$\text{NH}_4^+ + \text{NO}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{NO}_3^- + \text{H}_3\text{O}^+$

oz. kot za amonijev klorid

raztopina je kisla

Natrijev cianid (NaCN)

$\text{Na}^+ + \text{CN}^- + \text{H}_2\text{O} \rightleftharpoons \text{Na}^+ + \text{HCN} + \text{OH}^-$

oz. $\text{CN}^- + \text{H}_2\text{O} \rightleftharpoons \text{HCN} + \text{OH}^-$

raztopina je bazična

Kalijev sulfid (K_2S)

$2\text{K}^+ + \text{S}^{2-} + 2\text{H}_2\text{O} \rightleftharpoons 2\text{K}^+ + \text{H}_2\text{S} + 2\text{OH}^-$

oz. $\text{S}^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HS}^- + \text{OH}^-$

raztopina je bazična

52. Primerjaj pH raztopine amonijevega nitrata ($c = 1 \text{ mol} \cdot \text{dm}^{-3}$) in pH raztopine natrijevega karbonata ($c = 1 \text{ mol} \cdot \text{dm}^{-3}$)! Odgovor ustrezno utemelji!

Rezultat: $\text{NH}_4^+ + \text{NO}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+ + \text{NO}_3^-$; pH < 7;

oz. $\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+ + \text{NO}_3^-$

$2\text{Na}^+ + \text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons 2\text{Na}^+ + \text{HCO}_3^- + \text{OH}^-; \text{pH > 7}$;

oz. $\text{CO}_3^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{OH}^-$

53. Izmerimo vrednosti pH vodnih raztopin različnih soli in dobimo naslednje rezultate:

<table>
<thead>
<tr>
<th>sol</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCl_2</td>
<td>5,6</td>
</tr>
<tr>
<td>CuSO_4</td>
<td>3,8</td>
</tr>
<tr>
<td>Na_2CO_3</td>
<td>11,5</td>
</tr>
<tr>
<td>CH_3COONa</td>
<td>8,1</td>
</tr>
</tbody>
</table>

a) Ali so raztopine kisle, nevtralne ali bazične?
b) Kakšne kemijske reakcije potečejo v vodnih raztopinah?
c) Izračunajte koncentracije ionov H_3O^+ za vse raztopine!

Rezultat: a) kisla, kisla, bazična, bazična; c) $2,5 \times 10^{-6} \text{ mol/dm}^3; 1,6 \times 10^{-4} \text{ mol/dm}^3; 3,2 \times 10^{-12} \text{ mol/dm}^3; 7,9 \times 10^{-9} \text{ mol/dm}^3$

54. Izračunajte pH raztopine amonijevega klorida, če je koncentracija topljenca $0,10 \text{ mol} \cdot \text{dm}^{-3}$!

Konstanta hidrolize omenjene soli je $5,55 \times 10^{-10}$.
Rešitev:

\[K_h = \frac{[H_2O^+][NH_3]}{[NH_4^+]} \Rightarrow [H_2O^+] = \sqrt{5,55 \times 10^{-10} \times 0,100} = 7,45 \times 10^{-6} \text{ mol/dm}^3 \]

\[\text{pH} = - \log [H_2O^+] = 5,13 \]

Odg.: pH raztopine amonijevega klorida je 5,13.

*55. Koliko g natrijevega nitrata(III) (NaNO\(_2\)) je raztopljenega v 100 cm\(^3\) raztopine, če je pH raztopine 7,68 in konstanta hidrolize 2,2 \times 10^{-11}!

Rezultat: 0,072 g

Opomba: Predpostavke so enake kot v rešeni nalogi 48.

Pufri

56. Napiši pare tistih kislin in baz, raztopljenih v vodi, iz katerih ne moreš pripraviti pufra!

<table>
<thead>
<tr>
<th>kislina</th>
<th>(K_a)</th>
<th>baza</th>
<th>(K_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CH(_3)COOH</td>
<td>1,76 \times 10^{-5}</td>
<td>4 NH(_3)</td>
<td>1,8 \times 10^{-5}</td>
</tr>
<tr>
<td>2 H(_3)BO(_3)</td>
<td>6 \times 10^{-10}</td>
<td>5 NaOH</td>
<td>> 100</td>
</tr>
<tr>
<td>3 HCl</td>
<td>> 100</td>
<td>6 KOH</td>
<td>> 100</td>
</tr>
</tbody>
</table>

Rezultat: 3 in 5; 3 in 6

57. Acetni pufer je zmes natrijevega acetata (CH\(_3\)COONa) in ocetne kisline (CH\(_3\)COOH). Ponazorite z urejenimi enačbami reakcije, ki potekajo ob dodatku kisline in ob dodatku baze v tako pufrsko mešanico! Razložite, zakaj se pH spremeni manj, kot bi se ob dodatku enake količine kisline (baze) v enako količino destilirane vode!

Rešitev:

Ob dodatki ionov OH\(^-\) (baze) in ob dodatku ionov H\(^+\) (kisline) nastaja slab disociirana snov, do tega v primeru destilirane vode ne pride.

Dodatek baze:

\[\text{CH}_3\text{COOH} + \text{OH}^- \rightarrow \text{CH}_3\text{COO}^- + \text{H}_2\text{O} \]

dodatek kisline:

\[\text{CH}_3\text{COO}^- + \text{H}^+ \rightarrow \text{CH}_3\text{COOH} \]
58. Pripraviti želite pufer, ki ga tvori ocetna kislina. Katere snovi in v kakšnem razmerju potrebujete, da lahko naredite acetatni pufer? Kaj se dogaja, ko temu pufru dodamo močno kisline ali močno bazu? Ponazorite dogajanje tudi s kemijskimi enačbami. Kolikšen je pH tega pufru, če je koncentracija ocetne kisline petkrat večja kot koncentracija acetatnih ionov in je konstanta disociacije kisline 1,76×10⁻⁵?

Rešitev:

Odgovor na prvi del naloge (priprava acetatnega pufrja) najdete v skriptah Laboratorijske vaje iz kemije, 1998, stran 57.

\[K_a = \frac{[\text{CH}_3\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{COOH}]} \Rightarrow \frac{[\text{H}_3\text{O}^+]}{c} = \frac{1,76\times10^{-5}\times5\times c}{c} = 8,80\times10^{-5} \text{ mol/dm}^3 \]

\[
\text{pH} = -\log (8,80\times10^{-5}) = 4,06
\]

Odg.: pH tako pripravljenega pufrja je 4,1.

59. Katere snovi in v kakšnem razmerju potrebujete, da lahko pripravite pufer, ki ga tvori amoniak? S pomočjo kemijskih enačb ponazorite, kaj se dogaja, ko temu pufru dodamo močno kisline ali močno bazu. Kolikšen je pH tega pufru, če je koncentracija amoniaka trikrat večja kot koncentracija amonijskih ionov in je konstanta ionizacije amoniaka 1,8×10⁻⁵?

Rezultat: Potrebujemo približno enaki množini amoniaka in soli amoniaka z močno kislinjo, ravnotežje v pufru je NH₃ + H₂O ⇄ NH₄⁺ + OH⁻.
Zaradi dodatka hidroksilnih ionov: NH₄⁺ + OH⁻ → NH₃ + H₂O.
Ko dodamo oksonijevi ione: NH₃ + H₃O⁺ → NH₄⁺ + H₂O; pH = 9,7

60. Izračunajte koncentracijo oksonijevih ionov ter pH pufrske mešanice, ki vsebuje 1,0 mol ocetne kisline in 0,50 mol natrijevega acetata v 1,0 L raztopine. (K_a = 1,76×10⁻⁵)

Rezultat: 3,5×10⁻⁵ mol/dm³; 4,5

*61. Izračunajte pH in koncentracijo oksonijevih ionov v pufru, ki smo ga pripravili iz 200 cm³ raztopine amoniaka s koncentracijo 0,10 mol·dm⁻³ in 150 cm³ raztopine amonijskega klorida s koncentracijo 0,15 mol·dm⁻³. (K_b = 1,76×10⁻⁵)

Rezultat: 9,2; 6,3×10⁻¹⁰ mol/dm³

*62. Izračunajte pH in koncentracijo oksonijevih ionov v pufru, ki smo ga pripravili iz 200 cm³ raztopine natrijevega acetata s koncentracijo 0,100 mol·dm⁻³ in 150 cm³ raztopine ocetne kisline s koncentracijo 0,150 mol·dm⁻³. (K_a = 1,76×10⁻⁵)

Rezultat: 4,7; 1,98×10⁻⁵ mol/dm³
*63. Koliko g natrijevega nitrata(III) morate dodati k 100 mL 0,0100 molarne raztopine dušikove(III) kisline, da dobite pufer s pH 4,0? ($K_a = 4,47 \times 10^{-4}$; volumen raztopine se zaradi dodatka soli ne spremeni; predpostavke so enake kot v rešeni nalogi 48.)

Rezultat: 0,31 g
KISLINE IN BAZE II

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

pH
koncentracija raztopin
kisline, baze, soli
nevtralizacija
titracija
ekvivalentna točka
indikatorji*

1. Napišite enačbo reakcije, ki poteka pri mešanju vodne raztopine kisline z vodno raztopino baze in opišite ravnotežje te reakcije pri sobni temperaturi!

2. Kako bi titrimetrično določili količino KOH v vodni raztopini? Napišite tudi enačbo reakcije, ki bi potekala pri analizi, ki jo predlagate!

3. Opišite titrimetrično določanje HCl s standardno raztopino NaOH. Omenite tudi indikator in barvni preskok!

4. Kakšna bi bila poraba HCl za titracijo baze, če bi vzorec namesto NaOH vseboval enako maso KOH. Odgovor utemelji!

 Rezultat: manjša

 Rezultat: več HCl

6. Razložite standardizacijo titranta in njen pomen, lahko na primeru standardizacije raztopine NaOH, ki smo jo potem uporabili za titracijo kisline!

7. Kako smo s pomočjo titracije določili molsko maso vinske kisline? Napišite enačbo reakcije, ki ponazarja standardizacijo titranta za to določitev!

8. Glede na tabelo indikatorjev* za kislinsko bazne titracije ter območje pH spremembe barve indikatorjev pojasni, če bi za titracijo NaOH s HCl lahko uporabili indikator bromkrezol vijolično namesto fenolftaleina!

Rezultat: da

9. Napišite urejeno enačbo nevtralizacije med klorovodikovo kislino in bakrovim(II) hidroksidom. Koliko molekul kisline reagira z 0,25 mola hidroksida?

Rezultat: $3,0 \times 10^{23}$

10. Koliko g H$_2$SO$_4$ mora vsebovati raztopina, s katero nevtraliziramo 20,0 g natrijevega hidroksida?

Rezultat: 24,5 g

11. Pri standardizaciji NaOH smo se zmotili in določili koncentracijo 0,1100 mol/dm3, resnična koncentracija je 0,1110 mol/dm3. Ali bomo pri izračunu količine kisline, ki smo jo titrirali s to bazo, določili preveč ali premalo kisline v vzorcu? Utemeljite odgovor!

Rezultat: premalo kisline

12. Za nevtralizacijo 50,0 mL vodne raztopine žveplove(VI) kisline potrebujemo 44,20 mL 0,115 M NaOH.

a) Izračunajte molarno koncentracijo kisline!

b) Pri katerem pH je pri tej titraciji ekvivalentna točka?

c) Kateri indikator lahko uporabimo pri tej titraciji?

Rešitev:

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

a) $n(\text{baza}) = 2 \cdot n(\text{kisлина})$

$$c(\text{b}) \cdot V(\text{b}) = 2 \cdot c(\text{k}) \cdot V(\text{k})$$

105

\[
c(k) = \frac{c(b) \cdot V(b)}{2 \cdot V(k)} = \frac{0,115 \cdot 44,20 \text{ mL}}{2 \cdot 50,0 \text{ mL}} = 0,0508 \text{ M}
\]

Odg.: a) kislina je 0,0508 M; b) ekvivalentna točka je pri pH = 7; c) uporabni indikatorji so: metil rdeče, bromkrezol modro, fenolftalein.

13. Koliko g in koliko molov NaCl nastane pri popolni nevtralizaciji 10,00 cm\(^3\) 0,1257 molarne raztopine HCl z NaOH?

Rešitev:

\[
\text{HCl} + \text{NaOH} \rightarrow \text{H}_2\text{O} + \text{NaCl}
\]

1 mol \hspace{1cm} 1 mol

\[
n = c \cdot V = 0,1257 \text{ mol/dm}^3 \cdot 0,010 \text{ dm}^3 = 1,257 \times 10^{-3} \text{ mol}
\]

\[
m = M \cdot n = 58,443 \text{ g/mol} \cdot 1,257 \times 10^{-3} \text{ mol} = 7,346 \times 10^{-2} \text{ g NaCl}
\]

Odg.: Pri nevtralizaciji nastane 1,257 \times 10^{-3} mola, tj. 7,346 \times 10^{-2} g NaCl.

14. Koliko cm\(^3\) 0,985 M raztopine NaOH potrebujemo za popolno nevtralizacijo raztopine, ki vsebuje 2,00 g ocetne kisline? Napišite urejeno enačbo reakcije, ki pri tem poteka!

Rešitev:

\[
\text{CH}_3\text{COOH} + \text{NaOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}
\]

\[
M(\text{CH}_3\text{COOH}) = 60,0516 \text{ g/mol}
\]

\[
2,00 \text{ g CH}_3\text{COOH} = 0,0333 \text{ mol}
\]

\[
n = c \cdot V
\]

\[
V = \frac{n}{c} = \frac{0,0333 \text{ mol} \cdot 1000 \text{ cm}^3}{0,9850 \text{ mol}} = 33,8 \text{ cm}^3
\]

Odg.: Za popolno nevtralizacijo 2,00 g CH\(_3\)COOH potrebujemo 33,8 cm\(^3\) 0,985 M NaOH.

15. Koliko molov žveplove(VI) kisline je potrebno za popolno nevtralizacijo raztopine, ki vsebuje 23,0 g kalijevega hidroksida? Napišite urejeno enačbo reakcije, ki pri tem poteka!

Rešitev:

\[
2 \text{ KOH} + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{H}_2\text{O}
\]

\[
M(\text{KOH}) = 56,1049 \text{ g/mol}
\]
23,0 g KOH = \frac{23,0}{56,1049} \text{mol KOH} = 0,410 \text{mol KOH}

\frac{n(\text{KOH})}{n(\text{H}_2\text{SO}_4)} = \frac{2}{1} \Rightarrow n(\text{H}_2\text{SO}_4) = \frac{1}{2} n(\text{KOH}) = \frac{0,410}{2} = 0,205 \text{mol}

Odg.: Za nevtralizacijo omenjene raztopine KOH je potrebno 0,205 mol H\textsubscript{2}SO\textsubscript{4}.

16. Opišite standardizacijo 0,1 M NaOH z 0,0987 M HCl! Določite približno porabo titranta za titracijo 50 mL raztopine NaOH!

Rešitev:

\text{HCl + NaOH} \rightarrow \text{H}_2\text{O} + \text{NaCl}

\[n(\text{NaOH}) = n(\text{HCl}) \]

\[c(b) \cdot V(b) = c(k) \cdot V(k) \]

0,1 M \equiv 0,0987 M \Rightarrow c(b) \sim c(k) \Rightarrow V(k) \sim V(b) \Rightarrow V(k) \sim 50 \text{ mL}

Odg.: Za titracijo raztopine NaOH bi porabili približno 50 mL raztopine HCl.

17. Koliko mL 0,1012 M NaOH bi porabili za nevtralizacijo 25,0 mL 0,0983 M HCl? (Rezultat podajte z realnim številom decimalk, če upoštevate, da lahko dodajate titrant iz birete na ± 0,1 mL natančno!).

Rešitev:

\text{HCl + NaOH} \rightarrow \text{H}_2\text{O} + \text{NaCl}

\[c(b) \cdot V(b) = c(k) \cdot V(k) \]

\[V(b) = \frac{25,0 \text{ mL} \cdot 0,0983 \text{ mol/dm}^3}{0,1012 \text{ mol/dm}^3} = 24,3 \text{ mL} \]

Odg.: Za nevtralizacijo raztopine HCl bi porabili 24,3 mL raztopine NaOH.

18. 2,00 g NaOH raztopiš v 1000 mL bučki. V erlermajericu odpipetiraš 150 mL pripravljene raztopine NaOH ter vanjo kaneš nekaj kapljic indikatorja fenolftaleina, da se raztopina obarva rožnato. Raztopino baze nato titiraš z raztopino HCl neznane koncentracije. Za titracijo (preskok barve iz rožnate v brezbarvno) porabiš 24,3 mL kisline. Izračunaj molarno koncentracijo HCl!

Rezultat: 0,309 mol/L
19. Za nevtralizacijo 25,0 mL vodne raztopine KOH potrebujemo 24,0 mL 0,1035 M raztopine dušikove(V) kisline.
 a) Napišite enačbo reakcije, ki poteka med titracijo ter izračunajte koncentracijo baze!
 b) Pri katerem pH nastopi ekvivalentna točka?
 c) Kateri indikator bi uporabili? Utemeljite izbiro indikatorja in označite barvni preskok pri omenjeni titraciji!

 Rezultat: a) 0,0994 M; b) 7; c) fenolftalein; vijoličen → brezbarven

20. Za popolno nevtralizacijo 25,0 mL vodne raztopine žveplove(VI) kisline potrebujemo 24,70 mL 0,1050 M NaOH.
 a) Izračunajte molarno koncentracijo kisline!
 b) Napišite enačbo reakcije ter ocenite in utemeljite vrednost pH ekvivalentne točke!
 c) Navedite primeren indikator in utemeljite izbiro indikatorja!

 Rezultat: a) 0,0519 M; b) 7; c) fenolftalein

21. Pri titraciji 25,0 mL raztopine NaOH neznane koncentracije porabiš 20,0 mL 0,100 M raztopine HCl. Koliko g NaOH je v 250 mL te raztopine? Kateri indikator je primeren za omenjeno titracijo: metiloranž ali fenolftalein? Odgovor utemeljite!

 Rezultat: 0,800 g; fenolftalein

22. Za popolno nevtralizacijo 25,0 cm3 vodne raztopine cianovodikove kisline potrebujemo 24,70 cm3 raztopine NaOH s koncentracijo 0,1050 mol/dm3.
 a) Izračunajte molarno koncentracijo kisline!
 b) Napišite enačbo med titracijo potekle reakcije! Ocenite in utemeljite vrednost pH ekvivalentne točke!
 c) Kateri indikator bi izbrali za omenjeno titracijo in zakaj?

 Rezultat: a) 0,104 mol/dm3; b) > 7; c) fenolftalein

23. a) Kolikšen volumen raztopine NaOH ($c = 0,040$ mol/dm3) potrebujemo za popolno nevtralizacijo 20 cm3 raztopine HCl s koncentracijo 0,050 mol/dm3?
 b) Kako določimo končno točko titracije?
 c) Kako imenujemo končno točko titracije?
 d) Kaj je razlika med končno točko titracije in ekvivalentno točko?

 Rezultat: a) 25 mL; b) z indikatorjem; c) ekvivalentna točka; d) napaka titracije

24. Koliko raztopine natrijevega hidroksida s koncentracijo 0,985 mol/dm3 bi potrebovali za popolno nevtralizacijo 100 cm3 raztopine klorovodikove kisline s koncentracijo 0,1105 mol/dm3?

 Rezultat: 11,2 cm3
25. Izračunajte koncentracijo klorovodikove kisline, če smo titrirali 25,0 cm³ vzorca raztopine kisline z raztopino natrijevega hidroksida (c = 0,4994 mol/dm³) in porabili 24,55 cm³ raztopine hidroksida. Kakšen indikator bi lahko uporabili? Napišite enačbo kemijske reakcije!

Rezultat: 0,490 mol dm⁻³, fenolftalein ali metil oranž

26. V 1000 cm³ merilni bučki raztopimo 4,00 g kalijevega hidroksida in razredčimo do oznake. Vzorec 25,0 cm³ tako pripravljene raztopine hidroksida titriramo z raztopino klorovodikove kisline s koncentracijo 0,100 mol/dm³. Kolikšna je poraba kisline?

Rezultat: 17,8 cm³

27. Koliko ionov OH⁻ je potrebnih za popolno nevtralizacijo 10,0 cm³ vodne raztopine žveplove(VI) kisline s koncentracijo 0,200 mol/dm³?

Rezultat: 2,41 × 10⁻¹

28. Kakšna je bila poraba vodne raztopine klorovodikove kisline s koncentracijo 0,1025 mol/dm³ za titracijo 25,0 cm³ raztopine barijevega hidroksida, ki smo jo pripravili tako, da smo 1,0 g barijevega hidroksida raztopili v 200 cm³ raztopine?

Rezultat: 14,2 cm³

29. Pri titraciji 0,50 g neke diprotične kisline smo porabili 20 cm³ raztopine NaOH s koncentracijo 0,51 mol/dm³? Kolikšna je molska masa kisline?

Rezultat: 98 g/mol

30. 0,229 g dvobaznega hidroksida raztopite v 250 cm³ merilni bučki. 50 cm³ te raztopine titrirate z raztopino klorovodikove kisline s koncentracijo 0,01027 mol/dm³. Poraba reagenta je 50,6 cm³. Izračunajte molsko maso baze!

Rezultat: 176 g/mol

31. 0,255 g enobazne organske baze raztopimo v 250 mL merilni buči. 50,0 mL tako pripravljene raztopine titriramo z 0,01027 molarno raztopino žveplove(VI) kisline. Poraba reagenta je 50,6 mL. Izračunajte molsko maso baze!

Rezultat: 49,1 g/mol
32. 0,412 g dvobazne (diprotične) organske kisline raztopite v 200 cm³, 50,0 cm³ te raztopine titrirate ter porabite 13,5 cm³ raztopine natrijevega hidroksida s koncentracijo 0,0987 mol/dm³. Izračunajte molsko maso kisline!
Rezultat: 155 g/mol

33. 4,716 g organske enobazne (monoprotične) kisline raztopite v 250,0 cm³ in vzorec 50 cm³ titrirate z raztopino barijevega hidroksida (c = 0,250 mol/dm³). Poraba reagenta je 25,3 cm³. Izračunajte molsko maso kisline!
Rezultat: 75 g/mol

34. Za nevtralizacijo 0,2625 g trdne dvobazne kisline potrebujemo 36,45 cm³ raztopine natrijevega hidroksida s koncentracijo 0,1185 mol/dm³. Izračunajte molsko maso kisline!
Rezultat: 121,5 g/mol

35. Za nevtralizacijo 0,2625 g trdne trobazne kisline potrebujemo 10,55 cm³ raztopine natrijevega hidroksida s koncentracijo 0,1185 mol/dm³. Izračunajte molsko maso kisline!
Rezultat: 629,9 g/mol

36. Za titracijo 25,0 mL vzorca, ki je vseboval HCl, smo porabili 15 mL 0,150 M NaOH. Kolikšna je utežna koncentracija kisline v vzorcu, če je njegova gostota 1,046 g/cm³?
Rešitev:
0,015 L·0,150 mol/L = 2,25×10⁻³ mol H⁺ = 2,25×10⁻³ mol HCl = 0,0820 g HCl

$m(vzorec) = 25,0 \text{ mL} \cdot 1,046 \text{ g/mL} = 26,15 \text{ g}$

$w(\text{HCl}) = \frac{m(\text{HCl})}{m(vzorec)} \times 100 = 0,31 \%$

Odg.: Masni delež HCl v vorcu je bil 0,31 %.

37. Vzorec kisa za vlaganje (m = 1,00 g) vsebuje ocetno kislino. Za popolno nevtralizacijo kisline potrebujemo 9,58 cm³ raztopine kalijevega hidroksida (c = 0,270 mol/dm³). Kolikšen je masni delež (%) ocetne kisline v vzorcu? Kateri indikator bi bil primeren za omenjeno titracijo in zakaj?
Rezultat: 15,5 %; fenolfhtalein

38. Koliko mL 0,9987 M raztopine H₂SO₄ potrebujemo za nevtralizacijo 10,0 mL 20,0 % raztopine NaOH z gostoto 1,10 g/cm³?
Rešitev:

\[2 \text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{H}_2\text{O} + \text{Na}_2\text{SO}_4 \]

Izračunamo molarno koncentracijo NaOH:

\[
c = \frac{n}{V} = \frac{m(\text{NaOH})}{M(\text{NaOH}) \cdot V(\text{raztopina})} = \frac{m(\text{NaOH}) \cdot \rho(\text{raztopina})}{M(\text{NaOH}) \cdot m(\text{raztopina})} =
\]

\[
= \frac{20,0 \text{g} \cdot 1,10 \times 10^3 \text{g/L}}{39,9969 \text{g/mol} \cdot 100 \text{g}} = 5,50 \text{mol/L} = 5,50 \text{M}
\]

\[
c(\text{b}) \cdot V(\text{b}) = 2 \cdot c(\text{k}) \cdot V(\text{k}) \Rightarrow
\]

\[
V(\text{k}) = \frac{c(\text{b}) \cdot V(\text{b})}{2 \cdot c(\text{k})} = \frac{5,50 \text{M} \cdot 10,0 \text{mL}}{2 \cdot 0,9987 \text{M}} = 27,5 \text{mL}
\]

Odg.: Za nevtralizacijo 10,0 mL 20,0 % raztopine NaOH potrebujemo 27,5 mL 0,9987 M raztopine H\text{2SO}_4.

39. Zatehtamo 2,00 g žveplove(VI) kisline, ki vsebuje 92,0 utežnih % H\text{2SO}_4. V merilni bučki razredčimo kislino na 500 mL. Odpipetiramo 25 mL in titriramo z raztopino NaOH. Kolikšna je poraba, če je koncentracija raztopine NaOH 0,1020 mol/dm\(^3\)? Napišite tudi enačbo reakcije, ki pri tem poteka!

Rešitev: V 2,00 g raztopine H\text{2SO}_4 z masnim deležem topljenca 92,0 % je 1,84 g H\text{2SO}_4, tj. 1,87×10\(^{-2}\) mol H\text{2SO}_4.

\[\text{H}_2\text{SO}_4 + 2 \text{H}_2\text{O} \rightarrow 2 \text{H}_3\text{O}^+ + \text{SO}_4^{2-} \]

\[n(\text{H}_3\text{O}^+) = 2 \cdot n(\text{H}_2\text{SO}_4) = 2 \cdot 1,876\times10^{-2} \text{ mol} = 3,752\times10^{-2} \text{ mol} \]

V 500 cm\(^3\) je 3,752×10\(^{-2}\) mol H\text{3O}^+ ⇒ v 25 cm\(^3\) je 1,876×10\(^{-3}\) mol H\text{3O}^+.

\[\text{H}_3\text{O}^+ + \text{OH}^- \rightarrow 2 \text{H}_2\text{O} \]

Za nevtralizacijo potrebujemo 1,876×10\(^{-3}\) mol OH\(^-\), torej 1,876×10\(^{-3}\) mol NaOH.

\[
c = \frac{n}{V} \Rightarrow V = \frac{n}{c} = \frac{1,876 \times 10^{-3} \text{mol}}{0,1020 \text{ mol/dm}^3} = 18,4 \text{ cm}^3
\]

Odg.: Za opisano nevtralizacijo potrebujemo 18,4 cm\(^3\) raztopine baze.

40. Koliko cm\(^3\) raztopine žveplove(VI) kisline s koncentracijo 0,200 mol/dm\(^3\) potrebujete za nevtralizacijo 20 cm\(^3\) raztopine natrijevega hidroksida z masnim deležem topljenca 20 % (gostota raztopine je 1,10 g/cm\(^3\))?
Rezultat: $0,28\cdot10^3 \text{ cm}^3$

41. Kakšna je poraba raztopine klorovodikove kisline s koncentracijo $0,1075 \text{ mol/dm}^3$ za popolno nevtralizacijo 20,90 g raztopine barijevega hidroksida z masnim deležem topljenca 5,000 %, če je gostota raztopine barijevega hidroksida 1,045 g/cm3?

Rezultat: 113,5 cm3

42. Zatehtamo 2,00 g 92,0 % dušikove(V) kisline in v merilni bučki razredčimo na 500 cm3. Odpipetiramo 25,0 cm3 in titriramo z raztopino NaOH tako, da kisline popolnoma nevtraliziramo. Kolikšna je poraba reagenta, če je koncentracija raztopine NaOH 0,1020 mol/dm3? Kateri indikator uporabimo in zakaj?

Rezultat: 14,3 cm3; fenolftalein ali metil oranž

43. Zatehtamo 5,00 g vodne raztopine klorovodikove kisline z masnim deležem topljenca 31,0 %. V merilni bučki razredčimo kisline na 500 mL. Odpipetiramo 25,0 mL raztopine kisline in titriramo z raztopino barijevega hidroksida. Kolikšna je poraba reagenta, če je koncentracija raztopine barijevega hidroksida 0,1020 mol/L? Napišite tudi reakcijo, ki pri tem poteka!

Rezultat: 10,4 mL

44. Zatehtamo 200 g raztopine barijevega hidroksida z masnim deležem topljenca 3,0 %. V merilni bučki razredčimo bazo na 500 mL. Odpipetiramo 25 mL in titriramo z raztopino klorovodikove kisline s koncentracijo 0,1020 mol/L. Kolikšna je poraba kisline? Napišite tudi reakcijo, ki pri tem poteka!

Rezultat: 34 mL

45. Kakšna je poraba raztopine natrijevega hidroksida s koncentracijo $0,1075 \text{ mol/dm}^3$ za popolno nevtralizacijo 20 cm3 raztopine žveplove(VI) kisline z masnim deležem topljenca 3,0 %, če je gostota raztopine žveplove(VI) kisline 1,045 g/cm3?

Rezultat: 0,12 dm3

46. Pripravljeno imamo 0,700 % raztopino HCl.

a) Kakšna je molarna koncentracija te raztopine, če je njena gostota 1,04 kg/dm3?
b) Kakšen je pH raztopine, če predpostavimo popolno disociacijo?
c) Ali bi bil pH raztopine manjši ali večji, če disociacija ne bi bila popolna? Odgovor utemeljite!
d) Kolikšen volumen raztopine NaOH ($c = 0,2432 \text{ mol/dm}^3$) potrebujemo za popolno nevtralizacijo 20,0 cm3 raztopine HCl? Kateri indikator uporabimo?
Kisline in baze II

e) Kakšna bi bila poraba NaOH pri titraciji 20 mL dvobazne kisline z enako množinsko koncentracijo kot jo ima HCl?

Rezultat: a) 0,200 mol/dm³; b) 0,70; c) višji; d) 16,4 cm³; fenolftalein; e) 32,8 mol/dm³

*47. Koliko 0,200 M raztopine H₂SO₄ morate dodati 20 mL 20 % raztopine NaOH z gostoto 1,1 g/cm³, da nevtralizirate vso bazo in dodate še 10 % prebitka kisline?

Rešitev:

\[M(\text{NaOH}) = 40,0 \text{ g/mol} \]

100 g 20 % raztopine NaOH vsebuje 20 g čistega NaOH

20 mL tj. 22 g raztopine NaOH vsebuje \(\frac{22 \text{ g} \times 20 \text{ g}}{100 \text{ g}} = 4,4 \text{ g čistega NaOH} \)

4,4 g NaOH \(\Rightarrow \) 0,11 mola NaOH

1 ml 0,200 M H₂SO₄ \(\Rightarrow \) 0,200×10⁻³ mol H₂SO₄ tj. 0,400×10⁻³ mol H⁺

1 mol NaOH reagira z 1 mol H⁺

0,400×10⁻³ mol OH⁻ reagira z 1,00 mL H₂SO₄

0,11 mol OH⁻ pomeni \(\frac{0,11 \text{ mol}}{0,400 \times 10^{-3} \text{ mol}} \text{ mL} = 275 \text{ mL H}_2\text{SO}_4 \)

10 % prebitek: 275 mL + 27,5 mL = 302,5 mL

Odg.: Za nevtralizacijo in še za 10 % prebitke moramo dodati 0,30 L 0,200 M raztopine H₂SO₄.

*48. Za nevtralizacijo 0,1921 g trdne dvobazne kisline potrebujemo 19,2 cm³ raztopine NaOH s koncentracijo 0,1049 mol/dm³.

a) Kako ugotovimo končno točko titracije?

b) Kakšna je molska masa kisline?

c) Kakšna je koncentracija ionov H₃O⁺, če kisline raztopimo v toliko vode, da je končni volumen raztopine 1,0 dm³ in predpostavimo popolno disociacijo?

d) Kakšen je v tem primeru pH raztopine?

Rezultat: a) z indikatorjem; b) 191 g/mol; c) 0,0020 mol/dm³; d) 2,7
*49. V 2,500 L merilno bučko damo 23,42 g trdne vinske kisline, 150,0 mL 1,000 mol/dm³ raztopine vinske kisline in 119,7 g raztopine vinske kisline z masnim deležem topljenca 25,00 % ter razredčimo do oznake. Izračunajte, kakšna je poraba raztopine natrijevega hidroksida s koncentracijo 0,10328 mol/L, če titiramo alikvot 10,00 cm³ raztopine vinske kisline!

Vinska kislina: HOOC – CH(OH) – CH(OH) – COOH

Rezultat: 39,15 mL

*50. V 1,00 L merilno bučko damo 13,72 g trdnega barijevega hidroksida, 100 mL 1,50 molarne raztopine barijevega hidroksida in 59,7 g 15,0 % raztopine barijevega hidroksida ter razredčimo do oznake. Izračunajte, kakšna je poraba raztopine klorovodikove kisline, s koncentracijo 0,09573 mol/L, če titiramo alikvot 25,00 mL raztopine barijevega hidroksida!

Rezultat: 0,147 L

*51. Kakšen volumen čistega plina HCl pri normalnih pogojih vsebuje zadostno količino HCl za popolno nevtralizacijo 100 cm³ raztopine, ki vsebuje 20 g kalijevega in 5,0 g natrijevega hidroksida v 1,0 dm³?

Rezultat: 1,1 dm³

*52. K 20,0 cm³ raztopine klorovodikove kisline s koncentracijo 1,00 mol/dm³ dodamo 10,00 cm³ raztopine natrijevega hidroksida neznane koncentracije. V merilni bučki nastalo zmes razredčimo na 250 cm³ in 25,00 cm³ te raztopine titriramo z raztopino kalijevega hidroksida s koncentracijo 0,100 mol/dm³. Poraba je 15,00 cm³. Kakšna je koncentracija raztopine natrijevega hidroksida?

Rezultat: 0,500 mol/dm³
Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

toplota (Q)

molarna toplota raztapljanja (ΔH_{razt} oz. ΔH_{razt})

specifična toplota pri konstantnem tlaku (c_p)

tplotna kapaciteta kalorimetra (naloga 19)

Računanje specifične toplote snovi

1. Kovinski vzorec z maso 18,02 g ima temperaturo 100 °C. Vzorec kovine vržemo v 25,0 g vode s temperaturo 18,3 °C. Zmesna temperatura je 20,1 °C. Izračunaj specifično toploto kovine! Specifična toplota vode je 4,184 J·g⁻¹·K⁻¹.

Rešitev:
Ko vržemo košček kovine v vodo, se toplota iz toplejšega predmeta prenese na hladnejši predmet, tako da se temperaturi vode in kovine izenačita. Ker je sistem toplotno izoliran, velja, da mora biti oddana toplota (odda jo toplejši predmet – v našem primeru kovina) enaka sprejeti toploti (sprejme jo hladnejši predmet – v našem primeru voda). To, da telo odda ali sprejme toploto, je potrebno nakazati s predznakom, zato velja:

\[Q_{sprejeta} = -Q_{oddana} \]

Sprememba temperature snovi pri prenosu neke količine toplote je odvisna od mase snovi in od sposobnosti snovi, da akumulira toploto. Čim večja je masa snovi in čim večja je sposobnost snovi, da akumulira toploto (c_p – specifična toplota pri konstantnem tlaku), manj se bo spremenila temperatura te snovi pri prenosu enake količine toplote. Z enačbo to

\[Q_{spr.} = -Q_{odd.} = m_{H_2O} \times c_p \times (T_{kon. H_2O} - T_{za}) = -m \times c_p \times (T_{ov.} - T_{za}) \]

\[\Rightarrow c_{p, kov.} = \frac{m_{H_2O} \times c_p \times (T_{kon. H_2O} - T_{za})}{m_{kov.} \times (T_{kon. kov.} - T_{za})} = \]

\[= -\frac{25,0 \times 4,184 \times (20,1 °C - 18,3 °C)}{18,02 \times (20,1 °C - 100 °C)} = 0,131 \ J\times g^{-1} \times K^{-1} \]

Odg.: Specifična toplota kovine je 0,131 J·g⁻¹·K⁻¹.
2. Koliko gramov cinka segretega na 100 °C smo potrebovali, da smo 17,0 g vode segreli iz 20,0 °C na 26,0 °C? Specifična toplota vode je 4,184 J·g⁻¹·K⁻¹, specifična toplota cinka pa 0,388 J·g⁻¹·K⁻¹.
 Rezultat: 14,9 g

3. Kolikšna bo temperatura vode, ko zmešamo 1000 g vode s temperaturo 20,0 °C in 500 g vode s temperaturo 90,0 °C? Predpostavite, da je specifična toplota vode pri 20,0 °C enaka specifični toploti vode pri 90,0 °C in je 4,184 J·g⁻¹·K⁻¹.
 Rezultat: 43,3 °C

4. a) Opišite enostaven laboratorijski način za določanje specifične toplote kovin!
 b) Izračunajte, kolikšna bo končna temperatura 500 g vodes temperaturo 20 °C, potem ko ji dovedemo 16,75 kJ toplote; specifična toplota vode je 4,184 J·g⁻¹·K⁻¹.
 Rezultat: 28 °C

5. V dobro izoliran lonček, v katerem je 80 g vode s temperaturo 20,0 °C vržete košček kovine s temperaturo 200 °C. Kovina tehta 28,52 g. Voda se segreje na 300 K. Izračunajte specifično toploto kovine \(c_p \) kovine in ocenite molsko maso kovine \(A \) kovine, g·mol⁻¹! Pri računanju predpostavite, da nič vode ne izhlapi! \(c_p \) kovine = 25,94 J·mol⁻¹·K⁻¹.
 Rezultat: 0,46 J·g⁻¹·K⁻¹; 56 g·mol⁻¹

6. 200 g kovinskega vzorca segrejemo na 50 °C. Vržemo ga v 100 mL vode, ki ima začetno temperaturo 20,0 °C. Zmesna temperatura je 25,0 °C.
 Dodatni podatki: \(\rho_\text{H}_2\text{O} = 0,998 \text{ g cm}^{-3} \), \(c_p \text{H}_2\text{O} = 4,184 \text{ J g}^{-1} \cdot \text{K}^{-1} \), \(c_p \) kovine = 25,94 J·mol⁻¹·K⁻¹.
 Izračunajte specifično toploto kovine!
 Izračunajte približno molsko maso kovine!
 Rezultat: a) 0,42 J·g⁻¹·K⁻¹; b) 62 g·mol⁻¹

7. 300 g kovinskega vzorca segrejemo na 41,0 °C. Vržemo ga v kalorimeter, ki vsebuje 100 cm³ vode \((\rho = 0,998 \text{ g cm}^{-3}) \) s temperaturo 20,0 °C. Zmesna temperatura je 25,0 °C.
 a) Izračunajte specifično toploto kovine!
 b) Ali je dejanska specifična toplota kovine večja ali manjša od izračunane, če predpostavimo, da uporabljen kalorimeter ni bil idealen (toplotne izgube) in je bila temperatura okolice 20 °C? Utemeljite!
 c) Izračunajte približno molsko maso kovine!
Seveda sistema ne moremo popolnoma izolirati od okolice, kar največkrat vpliva na pravilnost izmerjenih rezultatov. Poglejmo si primer b)

Zapis enače v primeru, ko pride do toplotnih izgub (izmerjene vrednosti).

\[m_{\text{H}_2\text{O}} \times c_p \times T_{\text{H}_2\text{O izm.}} - m_{krov.} \times c_p \times T_{krov. izm.} \]

(1)

Zapis enače v primeru, če ne bi bilo toplotnih izgub (idealne vrednosti).

\[m_{\text{H}_2\text{O}} \times c_p \times T_{\text{H}_2\text{O}} - m_{krov.} \times c_p \times T_{krov.} \]

(2)

Če obe enači delimo, dobimo:

\[\frac{m_{krov.} \times c_p \times T_{krov. izm.}}{m_{krov.} \times c_p \times T_{krov.}} = \frac{m_{\text{H}_2\text{O}} \times c_p \times T_{\text{H}_2\text{O izm.}}}{m_{\text{H}_2\text{O}} \times c_p \times T_{\text{H}_2\text{O}} \times T_{krov.} \times T_{krov. izm.}} \]

(3)

\[\frac{c_p \times T_{krov. izm.}}{c_p \times T_{krov.}} = \frac{\Delta T_{\text{H}_2\text{O}}}{\Delta T_{\text{H}_2\text{O izm.}} \times T_{krov.}} \]

(4)

\[\frac{c_p \times T_{krov. izm.}}{c_p \times T_{krov.}} = \frac{(T_{krov.} - T_{za krov.}) \times (T_{krov.} - T_{za krov.})}{(T_{krov.} - T_{za krov.}) \times (T_{krov.} - T_{za krov.})} \]

(5)

Izmerjena končna temperatura (\(T_{krov. izm.} \)) je zaradi izgub nižja, kot bi bila v primeru brez izgub, tj. v primeru idealno izoliranega kalorimetra. Končni temperaturi za kovino in vodo v kalorimетru sta enaki (zmesna temperatura). Dejansko toplotno kapaciteto (\(c_p \)) bi izmerili v primeru idealno izoliranega kalorimetra.

Končna (zmesna) temperatura vode je višja od začetne temperature vode, končna (zmesna) temperatura kovine je nižja od začetne temperature kovine.

Tako je absolutna vrednost prvega člena v števcu v enačbi (5) večja od absolutne vrednosti prvega člena v imenovalcu (vrednosti sta pozitivni). Ravno tako je absolutna vrednost drugega člena v števcu v enačbi (5) večja od absolutne vrednosti drugega člena v imenovalcu (vrednosti sta negativni).

Vrednost ulomka enačbe (5) je torej > 1, kar pomeni, da je realna toplotna kapaciteta kovine v opisanem primeru večja od izmerjene.

Obe vrednosti v števcu sta večji od pripadajočih vrednosti v imenovalcu, saj bi bila končna temperatura vode brez toplotnih izgub višja od vrednosti, ki smo jo izmerili. Vrednost za izmerjeno temperaturno razliko pri kovini pa je večja (le ta se bolj ohladi) kot pa bi bila, če toplotnih izgub ne bi bilo.

To pomeni da ima ulomek vrednost , ki je večja od 1 ⇒ \(c_p \) krov. dej. > \(c_p \) krov. izm.

Rezultat: a) 0,43 J·g\(^{-1}\)·K\(^{-1}\); b) večja ; c) 60 g·mol\(^{-1}\)
Toplota reakcije (Toplota raztapljanja)

8. Pri raztapljanju 3,60 g KOH v 54,0 ml vode (ρ_vode = 1,00 g/cm^3) naraste temperatura od 24,3 °C na 39,8 °C. Izračunajte toploto raztapljanja (Q_{raz} v J/g) in molarno toploto raztapljanja (ΔH_{raz} v J/mol)! Pri računu upoštevajte, da je specifična toplota vode enaka specifični toploti raztopine, c_p = 4,184 J·g^{-1}·K^{-1}!

Pri raztapljanju soli, kislin in na splošno pri vseh kemijskih reakcijah pride do sproščanja ali porabljanja toplote. Reakcije, pri katerih se toplota sprošča, imenujemo eksotermne. Takrat se ob predpostavki, da se volumen reakcijske mešanice praktično ne spremeni (to velja za reakcije v raztopinah), energija sistema zmanjša, zato ima sproščena toplota negativen predznak. Obratno velja za endotermne reakcije, kjer se reakcijska zmes hlađi, kar pomeni, da se je na račun toplote vode povečala energija sistema (predznak +). Če poznamo maso sistema, njegovo toplotno kapaciteto in izmerimo spremembo temperature, lahko izračunamo, koliko toplote se je sprostilo (−) ali absorbiralo (+) v določenem primeru. Za konkreten primer velja takole

\[Q = m_{\text{raztopine}} \times c_{\text{p, raztopine}} \times T = \rho_{\text{H}_2\text{O}} \times V_{\text{H}_2\text{O}} \times m_{\text{soli}} \times c_{\text{p, raztopine}} \times T \]

\[Q_{\text{celotna}} = -3735 \text{ J} \] (eksotermna reakcija)

Podatek, da se je pri raztapljanju sprostila tako izračunana toplota, nam ne pove kaj dosti o lastnostih snovi. Zato je smiselno preračunati sproščeno toploto na enoto mase (g) oziroma na enoto množine snovi (mol). Sproščeno toploto na g soli v našem primeru označimo s \(Q_{\text{raz}} \), sproščeno toploto na mol soli pa z \(\Delta H_{\text{raz}} \). Izračun za obe količini je naslednji:

\[Q_{\text{raz}} = \frac{Q_{\text{celotna}}}{m_{\text{soli}}} = \frac{-3735 \text{ J}}{3,6 \text{ g}} = -1038 \text{ J} \times \text{g}^{-1} = -1,0 \text{ J} \times \text{g}^{-1} \]

\[\Delta H_{\text{raz}} = \frac{Q_{\text{celotna}}}{n_{\text{soli}}} = \frac{Q_{\text{celotna}}}{m_{\text{soli}} \times M_{\text{soli}}} = \frac{-3735 \times 56,1049 \text{ g} \times \text{mol}^{-1}}{3,6 \text{ g}} = -58216 \text{ J} \times \text{mol}^{-1} = -58 \text{ kJ} \times \text{mol}^{-1} \]

Odg.: Toplota raztapljanja je −1,0 J/g. Molarna toplota raztapljanja je −58 kJ/mol.

9. Utemlji, ali je molarna toplota raztapljanja odvisna od mase zatehtane baze oziroma soli!

Odg: Ni odvisna – velja za razredčene raztopine.

10. Pri raztapljanju 4,77 g KNO_3 v 50 cm^3 (49,8 g) vode se zmes ohladi od 22,1 °C na 16,1 °C.
 a) Opišite pripravo, v kateri opravljamo navedeni eksperiment!
 b) Opišite, kaj se med eksperimentom zgodi!
 c) Ali gre pri navedeni reakciji za eksotermno ali za endotermno reakcijo? Utemeljite!
 d) Izračunajte toploto raztapljanja (Q_{raz} v J/g topljenca)!

117
e) Izračunajte entalpijo raztapljanja \((\Delta H_{\text{raz}} \text{ v kJ/mol topljenca})! \)

f) Ali bi se temperatura raztopine zvišala ali znižala, če bi v vodi raztopili KOH, če vemo, da je reakcija raztapljanja te soli eksotermna?

Rezultat:
a) kalorimeter; c) endotermna reakcija; d) 0,29 kJ/g; e) 29 kJ/mol; f) zvišala

11. Kolikšna je končna temperatura v kalorimetru, v katerem smo v 50,0 g vode pri 22,3 °C raztopili 5,60 g natrijevega tiocianata (NaSCN) z isto temperaturo. Entalpija raztapljanja soli je 6,83 kJ·mol\(^{-1}\), specifična toplota raztopine je 4,17 J·g\(^{-1}\)·K\(^{-1}\).

Rezultat: 20,3 °C

12. Kolikšna je končna temperatura v kalorimetru, v katerem smo v 50,0 g vode pri 22,3 °C raztopili 3,80 g amonijevega nitrata(III) (NH\(_4\)NO\(_2\)) z isto temperaturo. Entalpija raztapljanja soli je 25,69 kJ·mol\(^{-1}\), specifična toplota raztopine 4,17 J·g\(^{-1}\)·K\(^{-1}\).

Rezultat: 15,5 °C

13. V kalorimetru, ki je vseboval 50,0 g vode pri temperaturi 20,2 °C, smo raztopili 4,17 g natrijevega acetata. Ko se vsa sol raztopi, temperatura naraste na 24,1 °C. Izračunajte \(\Delta H \) (molarno toploto raztapljanja)! Specifična toplota raztopine je 4,184 J·g\(^{-1}\)·K\(^{-1}\).

Rezultat: –17,4 kJ·mol\(^{-1}\)

14. Pri raztapljanju 5,00 g KOH v 50,0 g vode naraste temperatura od 24,0 °C na 45,0 °C.
 a) Ali gre za eksotermno ali za endotermno reakcijo?
 b) Izračunajte toploto raztapljanja in entalpijo raztapljanja KOH!

Rezultat: a) eksotermna reakcija; b) – 4,83 kJ oz. – 4830 J; – 54,2 kJ·mol\(^{-1}\); c) manjša

15. Pred meritvijo poskrbimo, da sta temperaturi vode in soli pred mešanjem enaki temperaturi okolice. Pri raztapljanju se raztopina ohlaja, torej je raztapljanje te soli endotermen proces. Pri določanju toplotne raztapljanja naredimo nekatere poenostavitve! Pojasnite, kako vpliva na izračun, če:
 a) zanemarimo maso topljenca in računamo samo z maso toplila,
 b) upoštevamo skupno maso raztopine (voda + sol); pri računu upoštevamo, da je \(c_p \text{raztopine} = c_p \text{vode} \) (dejansko je \(c_p \text{raztopine} < c_p \text{vode} \))
 c) zanemarimo, da je lonček, v katerem merimo specifično toploto raztapljanja, slabo izoliran
 d) Katera od poenostavitev (a ali b) je boljša, če se ne moremo izogniti toplotnim izgubam, ki so opisane pod točko c? Pri odgovoru upoštevajte, kot da je vpliv napake na izmerjeno
odziroma izračunano toploto v vseh treh primerih enak (ima enako absolutno vrednost)! Odgovor utemeljite!

Rezultat: a) je manjša; b) je večja; c) je manjša; d) poenostavitev pod točko b

16. V toplotno izolirani posodi nevtraliziramo 50,0 cm3 0,800 M ocetne kisline z gostoto 1,04 g·cm$^{-3}$ in temperaturo 20,15 °C s 40,00 cm3 10,0 % raztopine barijevega hidroksida, Ba(OH)$_2$, z gostoto 1,06 g·cm$^{-3}$ in temperaturo 20,15 °C. Toplota nevtralizacije kisline je –56,8 kJ·mol$^{-1}$. Specifična toplota nastale zmesi je 4,184 J·g$^{-1}$·K$^{-1}$. Kolikšna je končna temperatura sistema?

Rezultat: 25,9 °C

17. V toplotno izolirani posodi je 80 g vode, v katero dolijemo 5,0 ml koncentrirane H$_2$SO$_4$ (96 %) z gostoto 1,84 g·cm$^{-3}$. Po mešanju je temperatura 24,32 °C. Izračunajte molarno toploto razredčenja H$_2$SO$_4$. Pri računu upoštevajte, da je temperatura raztopin pred mešanjem 20,92 °C in da sta njuni specifični toploti 4,184 J·g$^{-1}$·K$^{-1}$.

Rezultat: –14 kJ·mol$^{-1}$

18. V polistirensko čašo nalijemo 100,00 cm3 raztopine srebrovega(I) nitrata(V) s koncentracijo 0,100 mol·dm$^{-3}$ in dodamo cinkov prah v prebitku. Začetna temperatura je 21,1 °C in se med reakcijo dvigne na 25,4 °C. Koliko toplote bi se sprostilo, če bi zreagiral 1 mol srebrovih(I) ionov. (Specifična toplota in gostota raztopine srebrovega nitrata(V) sta 4,1 J·g$^{-1}$·K$^{-1}$ in 1,00 g·cm$^{-3}$, maso in segrevanje cikovega prahu zanemari!)

\[\text{Zn}(s) + 2 \text{Ag}^{+}(aq) \rightarrow \text{Zn}^{2+}(aq) + 2 \text{Ag}(s) \]

Rezultat: 1,8×102 kJ

19. V kalorimetru s toplotno kapaciteto 480 J·K$^{-1}$ smo 100,0 mL vodne raztopine klorovodikove kisline s koncentracijo 0,200 mol·dm$^{-3}$ zmešali s 100,0 mL vodne raztopine amoniaka s koncentracijo 0,200 mol·dm$^{-3}$. Temperatura kalorimetra je narasla za 0,86 K. Izračunajte molarno toploto mešanja (oz. entalpijo nevtralizacije) in napišite enačbo kemije reakcije! Specifična toplota in gostota obeh raztopin sta 4,1 J·g$^{-1}$·K$^{-1}$ in 1,0 g·cm$^{-3}$.

Rezultat: –56 kJ/mol

*Toplotna kapaciteta kalorimetra je toplota, ki se porabi (ali sprosti), da se temperatura v „praznem” kalorimetru spremeni za 1 K! (Segrevanje oz. ohlajanje čutil ipd.) Upoštevati jo moramo samo pri zelo natančnih meritvah in pri majhnih toplotnih efektih.
ELEKTROLITSKA PREVODNOST

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:
močni / šibki elektroliti
upornost
specifična prevodnost
molska prevodnost

1. Upornost vodne raztopine NaCl s koncentracijo 0,00500 mol·dm$^{-3}$ je 1745 ohm. Kolikšna je molska prevodnost, če je konstanta celice 1,053 cm$^{-1}$?

Rešitev:

\[
\chi = \frac{\Theta}{R} = \frac{1,053 \text{ cm}^{-1}}{1745 \text{ ohm}} = 6,034 \times 10^{-4} \text{ ohm}^{-1} \cdot \text{cm}^{-1}
\]

\[
A = \frac{\chi}{c} = \frac{6,034 \times 10^{-4} \text{ ohm}^{-1} \cdot \text{cm}^{-1} \cdot 1000 \text{ cm}^3}{0,00500 \text{ mol}} = 120,7 \text{ ohm}^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1}
\]

Odg.: Molska prevodnost vodne raztopine NaCl s koncentracijo 0,00500 mol·dm$^{-3}$ je 121 ohm$^{-1}$·cm2·mol$^{-1}$

2. S celico, katere konstanta je 0,3591 cm$^{-1}$, izmerimo 0,00200 molarni vodni raztopini HCl upornost pri 18 °C. R = 859 ohm. Izračunaj specifično in molsko prevodnost raztopine!

Rezultat: 0,000418 ohm$^{-1}$·cm$^{-1}$; 209 ohm$^{-1}$·cm2·mol$^{-1}$

3. Koliko mg KCl morate zatehtati, da boste pripravili 100 cm3 raztopine, katere molska prevodnost je 141,3 Ω$^{-1}$·cm2·mol$^{-1}$? V relaciji: \(A = A^\kappa - k \sqrt{c} \), sta vrednosti \(A^\kappa = 149,8 \Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1} \) in \(k = 86,8 \).

Rezultat: 71,5 mg

4. Ob pomoči tabele, ki prikazuje odvisnost molske prevodnosti vodnih raztopin NaCl od korena koncentracije topljenca, ter ustreznega grafa izračunajte specifično prevodnost omenjene raztopine pri koncentraciji topljenca 0,0025 mol·dm$^{-3}$! Na grafu pokažite, koliko je molska prevodnost pri neskončnem razredčenju!
Tabela: Odvisnost molske prevodnosti vodnih raztopin NaCl, \(\Lambda \), od korena koncentracije topljenca, \(\sqrt{c} \):

<table>
<thead>
<tr>
<th>(\sqrt{c} / (\text{mol} \cdot \text{dm}^{-3}))</th>
<th>(\Lambda / (\Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,022</td>
<td>124,5</td>
</tr>
<tr>
<td>0,032</td>
<td>123,7</td>
</tr>
<tr>
<td>0,071</td>
<td>120,7</td>
</tr>
<tr>
<td>0,100</td>
<td>118,5</td>
</tr>
</tbody>
</table>

Naslov grafa:

Rezultat: 3,05\(\times \)10^{-4} \(\Omega^{-1} \cdot \text{cm}^{-1} \); 126 \(\Omega^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1} \)

5. Z nekaj besedami in s potrebnimi enačbami opišite, kako ste s pomočjo merjenja prevodnosti raztopin ocetne kisline določili stopnjo disociacije ocetne kisline. Napišite tudi, kakšne enote imajo parametri, ki nastopajo pri računanju!

6. Izračunajte pH raztopine ocetne kisline s koncentracijo 0,0100 mol dm^{-3}. Molska prevodnost omenjene raztopine je 15,9 ohm^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1}. Molska prevodnost raztopine ocetne kisline pri neskončnem razredčenju znaša 390,7 ohm^{-1} \cdot \text{cm}^2 \cdot \text{mol}^{-1}.

Rešitev:

\[
\alpha = \frac{A}{A^0} = \frac{[\text{CH}_3\text{COO}^-]}{c_{\text{CH}_3\text{COOH}}}
\]
Elektrolitska prevodnost

\[\left[\text{CH}_3\text{COO}^- \right] = \frac{A}{A^0} \times c_{\text{CH}_3\text{COOH}} = \frac{15,9 \text{ ohm}^{-1}\text{cm}^2\text{mol}^{-1}}{390,7 \text{ ohm}^{-1}\text{cm}^2\text{mol}^{-1}} \times 0,0100 \text{ mol} \cdot \text{dm}^{-3} = \]

\[= 0,000407 \text{ mol} \cdot \text{dm}^{-3} \]

deriva: \[[\text{CH}_3\text{COO}^-] = [\text{H}_3\text{O}^+] \]

\[\text{pH} = -\log[H_3O^+] = 3,39 \]

Odg.: pH raztopine ocetne kisline znaša 3,39.

7. Specifična prevodnost 1,10 mol/dm³ raztopine mražlinčne kisline, HCOOH, je 5,50×10⁻³ ohm⁻¹·cm⁻¹, njena prevodnost pri neskončnem razredčenju, \(A^0 \) je 362 ohm⁻¹·cm²·mol⁻¹. Izračunaj koncentracijo oksonijevih ionov in pH raztopine.

Rezultat: 0,0152 mol dm⁻³; 1,82

8. pH 0,0060 mol/dm³ raztopine amoniaka je 10,5. Kolikšne so stopnja disociacije, konstanta disociacije, specifična prevodnost in molska prevodnost raztopine (\(A^0 = 271,4 \Omega^{-1}\cdot\text{cm}^{-1}\cdot\text{mol}^{-1} \))? V računu pri vrednosti za [NH₃] zanemarite protoniran delež amoniaka!

Rezultat: 5,3 %; 1,7×10⁻⁵; \(\chi = 8,6×10^{-5} \Omega^{-1}\cdot\text{cm}^{-1} \); \(A = 14 \Omega^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \)

9. Kolikšne so stopnja disociacije, specifična prevodnost in molska prevodnost 0,010 mol/dm³ raztopine ocetne kisline (\(pK_a = 4,75; A^0 = 390,7 \Omega^{-1}\cdot\text{cm}^{-1}\cdot\text{mol}^{-1} \))? V računu pri vrednosti za [CH₃COOH] ne zanemarite disociiranega deleža kisline!

Rezultat: 4,2 %; \(\chi = 1,6×10^{-4} \Omega^{-1}\cdot\text{cm}^{-1} \); \(A = 16 \Omega^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \)

10. Kolikšni so pH, stopnja disociacije, specifična prevodnost in molska prevodnost 0,010 mol/dm³ raztopine amoniaka (\(pK_b = 4,75; A^0 = 271,4 \Omega^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \))? V računu pri vrednosti za [NH₃] zanemarite protoniran delež amoniaka!

Rezultat: 10,6; 4,2 %; \(\chi = 1,1×10^{-4} \Omega^{-1}\cdot\text{cm}^{-1} \); \(A = 11 \Omega^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \)

11. Izračunaj molsko prevodnost ocetne kisline, CH₃COOH pri neskončnem razredčenju, \(A^0 \) iz naslednjih podatkov:

\[A^0_{(\text{CH}_3\text{COOH})} = \lambda^0_{(\text{H}^+)} + \lambda^0_{(\text{CH}_3\text{COO}^-)} \]

\[A^0_{(\text{HCl})} = \lambda^0_{(\text{H}^+)} + \lambda^0_{(\text{Cl}^-)} = 426,16 \text{ ohm}^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \]

\[A^0_{(\text{NaCl})} = \lambda^0_{(\text{Na}^+)} + \lambda^0_{(\text{Cl}^-)} = 126,45 \text{ ohm}^{-1}\cdot\text{cm}^{-2}\cdot\text{mol}^{-1} \]
\[A^0_{(\text{CH}_3\text{COO}Na)} = \lambda^0_{(\text{Na}^+)} + \lambda^0_{(\text{CH}_3\text{COO}^-)} = 91,01 \text{ ohm}^{-1}\cdot\text{cm}^2\cdot\text{mol}^{-1} \]

Rezultat: 390,72 ohm\(^{-1}\)\cdot\text{cm}^2\cdot\text{mol}^{-1}
OKSIDACIJA IN REDUKCIJA

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

oksidacijsko število
oksidant, reducent
osidacijsko-reducijska enačba

Oksidacijska števila, oksidant in reducent, urejanje oksidacijsko-reducijskih enačb

1. Atomom v naslednjih spojinah določite oksidacijska števila:
 H₂O, PbI₂, H₂SO₄, Na₂SiO₃, Na₂S₂O₃, NaIO, H₃AsO₄

 Rezultat: H₂O; PbI₂; H₂SO₄; Na₂SiO₃; Na₂S₂O₃; NaIO; H₃AsO₄

2. Dopolnite bruto formulo ali ime spojine:

<table>
<thead>
<tr>
<th>ime spojine</th>
<th>bruto formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>kalcijev klorat(VII)</td>
<td>KBrO₃</td>
</tr>
<tr>
<td>bakrov(II) nitrat(V)</td>
<td>Na₂SO₃</td>
</tr>
</tbody>
</table>

Rezultat: Ca(ClO₄)₂, kalijev bromat(V), Cu(NO₃)₂, natrijev sulfat(IV)

3. Uredite naslednje redoks enačbe in zapišite, kaj je oksidant in kaj reducent:

 a) Ag + H₂SO₄ → Ag₂O + SO₂ + H₂O
 b) SnCl₂ + KMnO₄ + HCl → SnCl₄ + MnCl₂ + H₂O + KCl
 c) Na₂SO₃ + KMnO₄ + H₂O → Na₂SO₄ + MnO₂ + KOH
 d) Cu + HNO₃ → Cu(NO₃)₂ + NO + H₂O
 e) Cu + HNO₃ → Cu(NO₃)₂ + N₂O + H₂O
f) $\text{KMnO}_4 + \text{HCl} \rightarrow \text{MnCl}_2 + \text{Cl}_2 + \text{KCl} + \text{H}_2\text{O}$

g) $\text{Ca}_3(\text{PO}_4)_2 + \text{SiO}_2 + \text{C} \rightarrow \text{CaSiO}_3 + \text{P} + \text{CO}$

Rezultat:
a) $2 \text{Mn}^{2+} + 5 \text{BiO}_3^- \rightarrow 2 \text{MnO}_4^- + 5 \text{Bi}^{3+}$

$\text{IO}_3^- + 5 \text{SO}_2^{2-} \rightarrow \text{I}_2 + 5 \text{SO}_4^{2-}$

$\text{Br}^- + \text{Cr}_2\text{O}_7^{2-} \rightarrow \text{Br}_2 + \text{Cr}^{3+}$

$\text{S}^{2-} + \text{Cr}_2\text{O}_7^{2-} \rightarrow \text{S} + \text{Cr}^{3+}$

Rezultat:

$2 \text{Mn}^{2+} + 5 \text{BiO}_3^- + 14 \text{H}^+ \rightarrow 2 \text{MnO}_4^- + 5 \text{Bi}^{3+} + 7 \text{H}_2\text{O}$; reducent: Mn^{2+}; oksidant: BiO_3^-;

$2 \text{IO}_3^- + 5 \text{SO}_3^- + 2 \text{H}^+ \rightarrow \text{I}_2 + 5 \text{SO}_4^{2-} + \text{H}_2\text{O}$; reducent: SO_3^-; oksidant: IO_3^-;

$6 \text{Br}^- + 3 \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ \rightarrow 3 \text{Br}_2 + 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O}$; reducent: Br^-; oksidant: $\text{Cr}_2\text{O}_7^{2-}$;

$3 \text{S}^{2-} + 3 \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ \rightarrow 3 \text{S} + 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O}$; reducent: S^{2-}; oksidant: $\text{Cr}_2\text{O}_7^{2-}$

5. Uredni redoks enačbo in zapišite, koliko molov (kakšna množina) oksidanta zreagira z 0,020 mol reducenta!

a) $\text{Cr}_2\text{O}_7^{2-} + \text{Sb}^{3+} + \text{H}^+ \rightarrow \text{Sb}^{5+} + \text{Cr}^{3+} + \text{H}_2\text{O}$

b) $\text{Cu} + \text{NO}_3^- + \text{H}^+ \rightarrow \text{Cu}^{2+} + \text{NO} + \text{H}_2\text{O}$

Rešitev:

a) $\text{Cr}_2\text{O}_7^{2-} + 3 \text{Sb}^{3+} + 14 \text{H}^+ \rightarrow 3 \text{Sb}^{5+} + 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O}$

Tak zapis števil pomeni koeficiente v urejenih redoks enačbah.
Oksidacija in redukcija

\[n_{\text{CrO}_4^{2-}} = \frac{n_{\text{Sh}^{3-}}}{3} = \frac{0,020 \text{ mol}}{3} = 0,0067 \text{ mol} \]

b) \[3 \text{ Cu} + 2 \text{ NO}_3^- + 8 \text{ H}^+ \rightarrow 3 \text{ Cu}^{2+} + 2 \text{ NO} + 4 \text{ H}_2\text{O} \]
\[n_{\text{NO}_3^-} = \frac{n_{\text{Cu}} \times 2}{3} = \frac{0,020 \text{ mol} \times 2}{3} = 0,013 \text{ mol} \]
Odg.: Z 0,020 mol reducenta zreagira: a) 0,0067 mol oksidanta; b) 0,013 mol oksidanta

6. Ureditе naslednji dve enačbi redoks reakcij in za vsako napišite, koliko molov reducenta zreagira z 0,0050 mol oksidanta.
\[\text{MnO}_4^- + \text{HNO}_2 + \text{H}^+ \rightarrow \text{NO}_3^- + \text{Mn}^{2+} + \text{H}_2\text{O} \]
\[\text{Cr}_2\text{O}_7^{2-} + \text{I}^- + \text{H}^+ \rightarrow \text{Cr}^{3+} + \text{I}_2 + \text{H}_2\text{O} \]
Rezultat: 2 5 1 5 2 3; 0,013 mol; 1 6 1 4 2 3 7; 0,030 mol

7. Ureditе oksidacijsko-reducijsko enačbo, napišite oksidacijska števila, označite, katera snov je reducent in katera oksidant ter izračunajte, koliko g reducenta reagira s 15 cm³ raztopine oksidanta s koncentracijo 0,030 mol·dm⁻³!
\[\text{H}_2\text{SO}_4 + \text{NaI} \rightarrow \text{Na}_2\text{SO}_4 + \text{I}_2 + \text{SO}_2 + \text{H}_2\text{O} \]
Rešitev:
\[2 \text{H}_2\text{SO}_4 + 2 \text{NaI} \rightarrow \text{Na}_2\text{SO}_4 + \text{I}_2 + \text{SO}_2 + 2 \text{H}_2\text{O} \]
\[n_{\text{NaI}} = n_{\text{H}_2\text{SO}_4} = c_{\text{H}_2\text{SO}_4} \times V_{\text{H}_2\text{SO}_4} = 0,030 \text{ mol} \times \text{dm}^{-3} \times 0,015 \text{ dm}^3 = 0,00045 \text{ mol} \]
\[m_{\text{NaI}} = n_{\text{NaI}} \times M_{\text{NaI}} = 0,00045 \text{ mol} \times 149,89 \text{ g} \times \text{mol}^{-1} = 0,067 \text{ g} \]
Odg.: oksidant: H₂SO₄; reducent: NaI; reagira 0,067 g reducenta.

8. Ureditе naslednjo redoks enačbo in napiši, koliko g oksidanta reagira s 5,0 cm³ raztopine reducenta s koncentracijo 0,017 mol·dm⁻³!
\[\text{CuO} + \text{NH}_3 \rightarrow \text{Cu} + \text{N}_2 + \text{H}_2\text{O} \]
Rezultat: 3 2 3 1 3; 0,010 g

9. Ureditе naslednji redoks enačbi in napiši, koliko mg reducenta reagira s 5,00 cm³ raztopine oksidanta s koncentracijo 0,107 mol·dm⁻³!
Mg + HNO₃ + H⁺ → N₂O + Mg²⁺ + H₂O
KI + MnO₂ + H₂SO₄ → I₂ + KHSO₄ + MnSO₄ + H₂O
Rezultat: 4 2 8 1 4 5; 26,0 mg; 2 1 3 1 2 1 2; 178 mg

10. Izračunajte, kakšen volumen raztopine oksidanta s koncentracijo 0,0153 mol·dm⁻³ reagira z 0,00250 mol reducenta v naslednji reakciji:
KI + HNO₂ + H⁺ → I₂ + NO + K⁺ + H₂O
Rezultat: 2 2 2 1 2 2 2; 0,163 L

11. Uredi redoks enačbo in izračunajte, koliko g oksidanta je zreagiralo z 20 cm³ 0,098 mol·dm⁻³ raztopine reducenta!
KCl + MnO₂ + H₂SO₄ → Cl₂ + KHSO₄ + MnSO₄ + H₂O
Rezultat: 2 1 3 1 2 1 2; 0,085 g

12. Uredi naslednjo redoks reakcijo:
Na₂SO₃ + KMnO₄ + H₂SO₄ → K₂SO₄ + Na₂SO₄ + MnSO₄ + H₂O
in izračunaj, koliko gramov oksidanta je potrebno za popolno oksidacijo 100 gramov reducenta v tej reakciji!
Rezultat: 5 2 3 1 5 2 3; 50,2 g

13. Koliko tehta 1,00 × 10²⁴ molekul oksidanta v reakcijah, ki ju ponazarjata naslednji enačbi?

a) PH₃ + O₂ → P₂O₅ + H₂O

Rešitev:
a) 2 PH₃ + 4 O₂ → P₂O₅ + 3 H₂O

\[N_A = 6,022137 \times 10^{23} \text{ mol}^{-1} \]

\[N = n \times N_A \Rightarrow n = \frac{N}{N_A} \]

\[m = n \times M = \frac{1,00 \times 10^{24} \times 31,998 \text{ g} \cdot \text{mol}^{-1}}{6,022137 \times 10^{23} \text{ mol}^{-1}} = 53,1 \text{ g} \]
14. Uredite naslednjo redoks enačbo in zapišite maso 0,10 mol reducenta in tisto maso oksidanta, ki sprejme 1,0 mol elektronov:

\[
\text{HNO}_3 + \text{H}_2\text{S} \rightarrow \text{NO} + \text{S} + \text{H}_2\text{O}
\]

Rezultat: 2 3 2 3 4; 3,4 g; 21 g

15. Izračunajte, koliko g elementarnega joda se izloči pri reakciji 1,00 mol H\text{2}S z jodovo(V) kislinu!

Enačba reakcije, ki jo je potrebno še urediti: H\text{2}S + H\text{IO}_3 \rightarrow \text{I}_2 + \text{S} + \text{H}_2\text{O}

Rešitev:

\[
5\text{H}_2\text{S}^2^- + 2\text{H}^+ + 5\text{IO}_3^- \rightarrow \text{I}_2 + 5\text{S}^0 + 6\text{H}_2\text{O}
\]

\[
\frac{n_{\text{H}_2\text{S}^2^-}}{n_{\text{I}_2}} = \frac{5}{1} \Rightarrow n_{\text{I}_2} = \frac{n_{\text{H}_2\text{S}^2^-}}{5}
\]

\[
m_{\text{I}_2} = n_{\text{I}_2} \times M_{\text{I}_2} = \frac{1,00\text{ mol} \times 253,80\text{ g} \cdot \text{mol}^{-1}}{5} = 50,8\text{ g}
\]

Odg.: Izloči se 50,8 g elementarnega joda.

16. Koliko ionov MnO\text{4}^- je zreagiralo v naslednji oksidacijsko-redukijski reakciji, ki poteka v alkalnem mediju (uredi enačbo), če je reagiralo 0,010 mol Br\text{2}^-?

\[
\text{MnO}_4^- + \text{Br}_2^- + \text{H}_2\text{O} \rightarrow \text{MnO}_2^- + \text{BrO}_3^- + \text{OH}^-
\]

Rezultat: 2 1 1 2 1 2; 1,2×10\text{22}

17. Ioni Sn\text{2}^+ in MnO\text{4}^- v kislem mediju reagirajo po naslednji kemijski enačbi:

\[
\text{MnO}_4^- + \text{Sn}^{2+} + \text{H}^+ \rightarrow \text{Mn}^{2+} + \text{Sn}^{4+} + \text{H}_2\text{O}
\]

a) Uredi zgornjo kemijsko enačbo!

b) Katerim reagentom se spremeni oksidacijsko število in kako?

c) Ali gre za oksidacijsko-redukijsko reakcijo ali za reakcijo nevtralizacije?

d) Koliko molov Sn\text{2}^+ bi zreagiralo z 0,020 mol MnO\text{4}^-?

e) Koliko molov Mn\text{2}^+ bi dobili, če bi reakcija v reakcijski zmesi, ki je na začetku vsebovala 1 mol MnO\text{4}^- in 1 mol Sn\text{2}^+, potekla do konca?
f) Koliko cm3 raztopine Sn$^{2+}$ ($c = 0,0921$ mol/dm3) bi potrebovali, da bi v končni raztopini dobili $0,00200$ mol Mn$^{2+}$?

Rezultat: a) 2516258; b) Mn \rightarrow Mn$^{2+}$; Sn \rightarrow Sn$^{2+}$; c) redoks; d) $0,050$ mol; e) $0,4$ mol; f) $54,3$ cm3

Oksidacijsko-redukcijske titracije

18. Napišite, s katerima dvema reagentoma ste pri vajah določali koncentracijo železovega(II) sulfata(VI) v raztopini. Opišite analizi postopek, pri katerem ste uporabili raztopino reagenta vijolične barve. Ne pozabite na urejeno kemijsko enačbo!

Rezultat: $K_2Cr_2O_7$, $KMnO_4$ – vijoličen reagent

19. Opišite kvantitativno določanje železovega(II) sulfata(VI) z oksidacijsko redukcijsko titracijo s kalijevim permanganatom! Kakšne barve je vodna raztopina $KMnO_4$? Zakaj pri tej titriraciji nismo potrebovali indikatorja? Napišite urejeno enačbo reakcije, ki je pri tem določanju potekala!

Rezultat:

$5Fe^{2+} + MnO_4^- + 8 H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4 H_2O$

$10FeSO_4 + 2KMnO_4 + 8H_2SO_4 \rightarrow 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$

$KMnO_4$ – vijoličen; $MnSO_4$ – skoraj brezbarven; iz tega sledi, da se v ekvivalentni točki raztopina obarva rožnato

20. Napišite urejeno enačbo reakcije, ki ponazarja titrimetrično določanje železovega(II) sulfata(VI) s kalijevim dikromatom! Zakaj raztopine $K_2Cr_2O_7$ pred uporabo za titracijo nismo standardizirali? Ali bi potekala reakcija pri pH 10? Utemeljite odgovor! (njaveč 50 besed!)

Rezultat:

$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$

$6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 \rightarrow 3Fe_2(SO_4)_3 + K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O$

Reakcija poteka v kislem in pri pH 10 ne poteče, standardizacija raztopine $K_2Cr_2O_7$ ni potrebna, ker je $K_2Cr_2O_7$ primarni standard.
21. Pri titraciji FeSO\textsubscript{4} s K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7} smo uporabili kot indikator difenilaminsulfonsko kislino. Iz zasnote eksperimenta sklepaj, kaj je močnejši reducent, Fe2+ ioni ali difenilaminsulfonska kislina? Odgovor utemelji!

Rezultat: Fe2+ ioni

22. Raztopino, ki vsebuje 0,604 g FeSO\textsubscript{4} titriramo ob prisotnosti H\textsubscript{2}SO\textsubscript{4} z 0,100 mol·dm-3 raztopino KMnO\textsubscript{4} do končne točke. Koliko cm3 raztopine KMnO\textsubscript{4} porabimo pri titraciji? Uredite enačbo: MnO\textsubscript{4}2- + Fe2+ + H+ → Mn2+ + Fe3+ + H\textsubscript{2}O

Rešitev:
Urejeno enačbo poglej v nalogi 19.

\[
\frac{n_{\text{FeSO}_4}}{n_{\text{KMnO}_4}} = \frac{10}{2} = \frac{5}{1} \Rightarrow n_{\text{KMnO}_4} = \frac{n_{\text{FeSO}_4}}{5}
\]

\[
V_{\text{KMnO}_4} = \frac{n_{\text{KMnO}_4}}{c_{\text{KMnO}_4}} = \frac{0,604 \text{ g}}{5 \times 0,100 \text{ mol·dm}^{-3} \times 151,909 \text{ g·mol}^{-1}} = 0,00795 \text{ dm}^3
\]

Odg.: Pri titraciji porabimo 7,95 cm3 raztopine KMnO\textsubscript{4}.

23. Pri titraciji 50,0 mL raztopine FeSO\textsubscript{4} smo porabili 37,5 mL 0,0165 mol·dm-3 raztopine K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7}. Kolikšna je masna koncentracija FeSO\textsubscript{4}? Omenjeno titracijo ponazorimo z naslednjo enačbo reakcije, ki jo je potrebno še urediti!

\[
\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \rightarrow \text{Fe}^{3+} + \text{Cr}^{3+} + \text{H}_2\text{O}
\]

Rezultat: 6 1 14 6 2 7; 11,3 g·dm-3

24. Koliko mL 0,108 molarne raztopine K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7} porabiš za titracijo raztopine, ki vsebuje 2,545 g FeSO\textsubscript{4} v žvepleno-kislem mediju? Uredi enačbo!

\[
\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \rightarrow \text{Fe}^{3+} + \text{Cr}^{3+} + \text{H}_2\text{O}
\]

Rezultat: 6 1 14 6 2 7; 25,8 mL

25. V 250 ml bučki raztopiš 7,950 g KMnO\textsubscript{4}. Koliko ml pripravljene raztopine porabiš za titracijo 2,545 g Na\textsubscript{2}SO\textsubscript{3} v žvepleno-kislem mediju? Uredi enačbo!

\[
\text{Na}_2\text{SO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{Na}_2\text{SO}_4 + \text{MnSO}_4 + \text{H}_2\text{O}
\]

Rezultat: 5 2 3 1 5 2 3; 40,1 ml
26. Pri titraciji raztopine Sb\(^{3+}\) ionov potrebujemo 38,3 cm\(^3\) 0,128 mol-dm\(^{-3}\) raztopine BrO\(_3^-\). Koliko Sb\(^{3+}\) ionov je zreagiralo v omenjeni oksidacijsko-redukciji reakciji? Uredite enačbo reakcije!

\[\text{BrO}_3^- + \text{Sb}^{3+} + \text{H}^+ \rightarrow \text{Br}^- + \text{Sb}^{5+} + \text{H}_2\text{O}\]

Rezultat: 1 3 6 1 3 3; 8,86×10\(^{21}\)

27. V 250 mL bučki raztopiš 5,000 g KBrO\(_3\). Koliko mL pripravljene raztopine porabiš za titracijo 2,283 g SbCl\(_3\) v solno-kislem mediju? Uredi enačbo!

\[\text{SbCl}_3 + \text{KBrO}_3 + \text{HCl} \rightarrow \text{SbCl}_5 + \text{KBr}\]

Rezultat: 3 SbCl\(_3\) + KBrO\(_3\) + 6 HCl \rightarrow 3 SbCl\(_5\) + KBr + 3 H\(_2\)O; 27,9 mL

28. Uredite naslednjo enačbo kemijske reakcije:

\[\text{Cr}_2\text{O}_7^{2-} + \text{Cl}^- + \text{H}^+ \rightarrow \text{Cr}^{3+} + \text{Cl}_2 + \text{H}_2\text{O}\]

a) Ali gre za reakcijo nevtralizacije ali za redoks reakcijo?
b) Katerim atomom se v navedeni enačbi spremenijo oksidacijska števila in kako?
c) Koliko raztopine K\(_2\)Cr\(_2\)O\(_7\) (c = 0,0573 mol/dm\(^3\)) potrebujemo za titracijo 50,0 mL raztopine NaCl s koncentracijo 0,0491 mol/dm\(^3\)?
d) Kolikšno množino Cr\(^{3+}\) ionov bi dobili, če bi reakcijo izvedli z 1 mol Cr\(_2\)O\(_7^{2-}\) in 1 mol Cl\(^-\)?

Rezultat: 1 6 14 2 3 7; a) redoks; b) Cr\(_2\)O\(_7^{2-}\) \rightarrow Cr\(^{3+}\) \left(\begin{array}{c} +6 \\ Cr \rightarrow \text{Cr} \end{array}\right);\ Cl^- \rightarrow \text{Cl}_2 \left(\begin{array}{c} -1 \\ \text{Cl} \rightarrow \text{Cl} \end{array}\right);

c) 7,14 mL; d) \(\frac{1}{3}\) mol

*29. 1,00 cm\(^3\) raztopine kalijevega dikromata(VI) oksidira v kislem mediju 10,0 mg Fe\(^{2+}\) v Fe\(^{3+}\). Pri reakciji nastanejo tudi Cr\(^{3+}\). Kolikšna je molarna koncentracija raztopine kalijevega dikromata(VI) in kolikšno maso kalijevega dikromata(VI) potrebuješ za pripravo 1,00 dm\(^3\) raztopine s tako koncentracijo?

Rezultat: 0,0298 mol·dm\(^{-3}\); 8,78 g

*30. Kolikšno maso kalijevega permanganata potrebuješ za pripravo 2,50 dm\(^3\) raztopine, katere 10,0 cm\(^3\) reagira v kislem mediju z 250,0 mg Fe\(^{2+}\).

Rezultat: 35,4 g
*31. Koliko gramov kalijevega permanganata potrebujete za pripravo 1,00 L raztopine take koncentracije, da bi vsakih 10,0 mL te raztopine izločilo iz raztopine kalijevega jodida v kislem 0,00100 mol joda. Koliko molarna je pripravljena raztopina? Uredite enačbo!

\[\text{MnO}_4^- + I^- + H^+ \rightarrow I_2 + Mn^{2+} + H_2O \]

Rezultat: 2 10 16 5 2 8; 6,32 g, 0,0400 mol/L

Kombinirane naloge

32. Vzorec železovega(II) sulfata(VI) raztopimo v 250,0 cm³ raztopine, alikvot 50,0 cm³ titritamo s kalijevim dikromatom(VI) in porabimo 23,0 cm³ standardne raztopine s koncentracijo 0,1135 mol·dm⁻³. Izračunajte maso železovega(II) sulfata(VI) v vzorcu in v alikvotu!

Rezultat: 11,9 g; 2,38 g

33. Pri titraciji 25,0 cm³ vodne raztopine FeSO₄, ki smo jo dodali H₂SO₄, dosežemo ekvivalentno točko, ko iz birete dodamo 12,3 cm³ raztopine K₂Cr₂O₇. Standardno raztopino K₂Cr₂O₇ smo pripravili tako, da smo v 1,00 dm³ raztopine raztopili 4,903 g K₂Cr₂O₇.

a) Kaj je bireta?
b) Izračunajte molarno koncentracijo K₂Cr₂O₇!
c) Ali gre za reakcijo nevtralizacije, redoks reakcijo ali reakcijo hidrolize?
d) Uredite naslednjo kemijsko enačbo: Fe²⁺ + Cr₂O₇²⁻ + H⁺ → Fe³⁺ + Cr³⁺ + H₂O
e) Katerim atomom se pri navedeni kemijski reakciji spremeni oksidacijsko število? Kako?
f) Izračunajte molarno koncentracijo FeSO₄!
g) Izračunajte masni delež FeSO₄, če je gostota raztopine FeSO₄ 1,0 g/cm³!

Rezultat: b) 0,0167 mol/dm³; c) redoks; d) 6 1 14 6 2 7; e) Fe²⁺ → Fe³⁺; Cr⁶⁺ → Cr³⁺; f) 0,0492 mol/dm³; g) 0,747 %

34. 1,26 g prahu, ki vsebuje SnCl₂, raztopimo v 25,0 mL vode in nakisamo s koncentrirano H₂SO₄. Raztopino titriramo s KMnO₄, ki ima koncentracijo 0,0371 mol/L. Za titracijo porabimo 17,8 mL raztopine KMnO₄. Med titracijo poteče naslednja kemijska reakcija:

\[\text{Sn}^{2+} + \text{MnO}_4^- + H^+ \rightarrow \text{Sn}^{4+} + \text{Mn}^{2+} + H_2O \]

a) Uredite enačbo!
b) Ali gre za reakcijo nevtralizacije, redoks reakcijo ali reakcijo hidrolize?
c) Ali pri navedeni titraciji potrebujemo indikator? Utemeljite!
d) Izračunajte masni delež SnCl₂ v prahu ob predpostavki, da ostale komponente analize ne motijo!
Rezultat: a) 5 2 16 5 2 8; b) redoks; c) ne, ker je KMnO₄ obarvan Mg²⁺ soli pa ne; d) 24,8 %

35. Iz vzorca nečistega železovega (II) sulfata \((m = 5,40 \, g)\) smo pripravili 500 cm³ raztopine. Za analizo smo uporabili alikvot 20,0 cm³ te raztopine, ga nakisali in pri redoks titracijskem reakcijem porabili 10,6 cm³ raztopine kalijevega permanganata(VII) z molarne koncentracije 0,0252 mol·dm⁻³. Kolikšen del se nečistoč vsebuje vzorec nečistega železovega (II) sulfata?

Rešitev*:

\[
\begin{align*}
n_{\text{FeSO}_4 \ \text{alkivota}} & = n_{\text{KMnO}_4} \times 5 = c_{\text{KMnO}_4} \times V_{\text{KMnO}_4} \times 5 = 0,0002671 \, \text{mol} \\
30.\, \text{FeSO}_4 \ \text{almivota} & = n_{\text{FeSO}_4 \ \text{alkivota}} \times \frac{V_{\text{raztopine}}}{V_{\text{alkivota}}} = 0,0002671 \, \text{mol} \times 25 = 0,03339 \, \text{mol} \\
m_{\text{FeSO}_4 \ \text{zmesi}} & = n_{\text{FeSO}_4 \ \text{zmesi}} \times M_{\text{FeSO}_4} = 5,072 \, \text{g} \\
\text{w}_{\text{FeSO}_4} & = \frac{m_{\text{FeSO}_4 \ \text{zmesi}}}{m_{\text{zmesi}}} \times 100\% = 93,9 \, \% \\
\text{w}_{\text{ne}} & = 100\% - \text{w}_{\text{FeSO}_4} = 6,1 \, \% \\
\end{align*}
\]

Odg.: Vzorec nečistega železovega (II) sulfata vsebuje 6,1 % nečistoč.

36. Iz 5,4 g nečistega železovega (II) sulfata, ki vsebuje 7,0 % nečistoč, smo pripravili 500 cm³ raztopine. Za analizo smo uporabili alikvot 20,0 cm³ te raztopine, ga nakisali in titrirali z raztopino kalijevega dikromata s koncentracijo 0,0252 mol·dm⁻³. Kolikšna je poraba reagenta?

Rezultat: 8,7 cm³

37. Vzorcu železovega sulfata (FeSO₄) je primešanih nekaj nečistoč. 8,00 g zmesi raztopiš z vodo v 500 ml bučki. Iz bučke odvzameš 25 mL raztopine, kateri dodaš 50 mL H₂SO₄ \((c = 1 \, \text{mol/L})\) in titiraš z vodno raztopino K₂Cr₂O₇. Ves Fe²⁺ zreagira po dodatku 13,8 mL K₂Cr₂O₇ (koncentracija 0,0254 mol/L). Uredi enačbo reakcije in izračunaj masni delež FeSO₄ v zmesi!

\[
\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + \text{H}^+ \rightarrow \text{Fe}^{3+} + \text{Cr}^{3+} + \text{H}_2\text{O}
\]

Komentiraj na videz nasprotujoči si trditvi, da je enačba v nalogi redukcija in oksidacija!

Rezultat: 6 1 14 6 2 7; 0,799

* Glej urejeno enačbo v nalogi 19!
38. V analizo dobiš bel prah, ki vsebuje SnCl$_2$. 5,3 g prahu raztopiš v 250 mL bučki v H$_2$SO$_4$ s koncentracijo 2 mol/L (dopolniš do oznake). Za nadaljnjo analizo odvzameš 25 mL raztopine belega prahu. K 25 mL raztopine priliješ 25 mL H$_2$O in titiraš s KMnO$_4$ s koncentracijo 0,0371 mol/L. Za titracijo porabiliš 15,8 mL raztopine KMnO$_4$. Izračunaj masni delež SnCl$_2$ v belem prahu ob predpostavki, da ostale komponente analize ne motijo. Uredi tudi enačbo reakcije!

$$\text{Sn}^{2+} + \text{MnO}_4^- + \text{H}^+ \rightarrow \text{Sn}^{4+} + \text{Mn}^{2+} + \text{H}_2\text{O}$$

Rezultat: 0,52; 5 2 16 5 2 8

*39. Izračunajte, kolikšen je masni delež kalcija v 0,450 g vzorca, če ves kalcij oborite kot kalcijev oksalat in po raztapljanju oborine v kislini določite koncentracijo oksalatnih ionov s titracijo z 0,0200 molarno raztopino KMnO$_4$. Pri titraciji ste porabili 28,7 cm3 raztopine KMnO$_4$. Napišite in uredite oksidacijsko redukcijsko enačbo!

$$\text{CaC}_2\text{O}_4 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + \text{H}_2\text{C}_2\text{O}_4$$

Rešitev:
$$5 \text{H}_2\text{C}_2\text{O}_4 + 2 \text{KMnO}_4 + 3 \text{H}_2\text{SO}_4 \rightarrow 10 \text{CO}_2 + 2 \text{MnSO}_4 + \text{K}_2\text{SO}_4 + 8 \text{H}_2\text{O}$$

$$n_{\text{KMnO}_4} = c_{\text{KMnO}_4} \times V_{\text{KMnO}_4} = 0,0200 \text{ mol-dm}^{-3} \times 28,7 \times 10^{-3} \text{ dm}^3 = 5,74 \times 10^{-4} \text{ mol}$$

$$n_{\text{H}_2\text{C}_2\text{O}_4} = \frac{5}{2} \Rightarrow n_{\text{H}_2\text{C}_2\text{O}_4} = \frac{5 \times n_{\text{KMnO}_4}}{2} = 1,44 \times 10^{-3} \text{ mol}$$

$$n_{\text{H}_2\text{C}_2\text{O}_4} = n_{\text{Ca}}$$

$$m_{\text{Ca}} = n_{\text{Ca}} \times M_{\text{Ca}} = 1,44 \times 10^{-3} \text{ mol} \times 40,078 \frac{\text{g}}{\text{mol}} = 0,0576 \text{ g}$$

$$w_{\text{Ca}} = \frac{m_{\text{Ca}}}{m_{\text{vzorca}}} \times 100 \% = \frac{0,0576 \text{ g} \times 100 \%}{0,450 \text{ g}} = 12,8 \%$$

Odg.: V vzorcu se nahaja 12,8 utežnih odstotkov kalcija.

*40. Za titracijo 0,500 g tehničnega natrijevega oksalata v kislem porabimo 16,2 mL 0,0200 M raztopine kalijevega permanganata. Kolikšen je masni delež Na$_2$C$_2$O$_4 \cdot 5$ H$_2$O v nečisti soli?

Rezultat: 36,3 %

*41. Koliko dm3 klora pri temperaturi 20 °C in pritisku 73,0 kPa nastane pri reakciji 50 cm3 raztopine kalijevega dikromata s koncentracijo 0,030 mol-dm$^{-3}$ s prebitkom solne kisline, če poteka naslednja reakcija? (Enačba ni urejena!)
\[
K_2Cr_2O_7 + HCl \rightarrow CrCl_3 + Cl_2 + KCl + H_2O
\]
Rezultat: 1 14 2 3 2 7; 0,15 dm³

*42. Koliko g KMnO₄ zreagira s H₂O₂, da se pri tlaku 300 mmHg in temperaturi 27,0 °C v skladu z enačbo reakcije, ki jo je potrebno urediti, razvije 12,28 L kisika?

\[
KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + O_2 + H_2O
\]
Rezultat: 2 5 3 1 2 5 8; 12,4 g

*43. V reakciji med HI in H₂SO₄ nastane elementarni jod in H₂S:

\[
HI + H_2SO_4 \rightarrow I_2 + H_2S + H_2O
\]
Uredite kemijsko enačbo. Kakšen volumen oksidanta s koncentracijo 3,00 mol·dm⁻³ potrebujete za sintezo 100 g joda? Kakšen volumen plina H₂S bi v tem primeru nastal, če bi se plin pri 20 °C in 0,970×10⁵ Pa kvantitativno izločil iz reakcijske zmesi?

Rezultat: 8 1 4 1 4; 32,8 cm³, 2,48 dm³

*44. Koliko g fosforjeve(V) kisline dobiš pri segrevanju fosforjeve(III) kisline, če pri reakciji nastane tudi 6,0 dm³ plina fosfina, merjeno pri tlaku 60 kPa in temperaturi 60 °C? Uredi enačbo!

\[
H_3PO_3 \rightarrow H_3PO_4 + PH_3
\]
Rezultat: 4 H₃PO₃ \rightarrow 3 H₃PO₄ + PH₃; 38 g
GALVANSKI ČLEN

Reševanje nalog v tem poglavju zahteva razumevanje naslednjih izrazov:

oksidacija in redukcija
potencial člena (= napetost člena)
standardni elektrodni potencial
Nernstova enačba
Faradayevi zakoni

1. Pri 25 °C sestavimo galvanski člen:

\[\text{Zn} | \text{Zn}^{2+} (0,500 \text{ M}) \parallel \text{Cu}^{2+} (1,00 \text{ M}) | \text{Cu} \]

Kolikšno napetost člena izmerimo, če vemo, da so vrednosti \(E^0 (\text{Zn}^{2+} | \text{Zn}) = -0,763 \text{ V} \) in \(E^0 (\text{Cu}^{2+} | \text{Cu}) = + 0,337 \text{ V} \)? Napišite tudi katodno in anodno reakcijo, označite pozitivni in negativni pol člena ter izračunajte kolikšna električna energija se sprosti pri reakciji enega mola soli!

Rešitev:
Delni reakciji, ki potekata ob elektrodah:

\[\text{Zn}(s) \rightarrow \text{Zn}^{2+} (aq) + 2e^- \quad \text{(anoda; oksidacija; negativni pol člena)} \]
\[\text{Cu}^{2+} (aq) + 2e^- \rightarrow \text{Cu}(s) \quad \text{(katoda; redukcija; pozitivni pol člena)} \]

Potencial člena (Nernstova enačba):

\[E(\text{člen}) = E^0 \left(\text{člen} \right) - \frac{2,303 \cdot R \cdot T}{n \cdot F} \left(\frac{\left[\text{Zn}^{2+} \right]}{\left[\text{Cu}^{2+} \right]} \right) \]

\(E^0 \) je standardni elektrodni potencial, \(R \) splošna plinska konstanta \((8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8,314 \text{ V} \cdot \text{A} \cdot \text{s} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})\), \(T \) absolutna temperatura, \(n \) število osnovnih nabojev iona, \(F \) Faradayeva konstanta \((96485 \text{ A} \cdot \text{s} \cdot \text{mol}^{-1})\), 2,303 pa pretvornik naravnega logaritma v desetiškega.
Standardni elektrodni potencial:

\[E^\circ (\text{člen}) = E^\circ (\text{Cu}^{2+}/\text{Cu}) - E^\circ (\text{Zn}^{2+}/\text{Zn}) = 0,337 \text{ V} - 0,763 \text{ V} = -0,426 \text{ V} \]

Pri temperaturi 25 °C je potencial člena (Nernstova enačba):

\[E(\text{člen}) = -\frac{0,0592 \text{ V}}{2} \log \frac{0,500 \text{ M}}{1,00 \text{ M}} = \]

Električna energija (\(W \)), ki jo proizvede galvanski člen: \(W = z \cdot F \cdot E \) pri čemer je \(z \cdot F \) pretečena elektrenina (A·s).

\[W = 2 \text{ mol} \cdot 96485 \text{ A·s·mol}^{-1} \cdot 1,109 \text{ V} = 214037 \text{ A·V·s} = 214,0 \text{ kJ} \]

Odg.: Potencial galvanskega člena je 1,109 V in energija sistema se zmanjša za 214,0 kJ koristnega električnega dela.

2. Napišite galvanski člen, sestavljen iz železovega in bakrovega polčlena, če sta standardna potenciala: \(E^\circ (\text{Fe}^{2+}/\text{Fe}) = -0,440 \text{ V} \), \(E^\circ (\text{Cu}^{2+}/\text{Cu}) = +0,337 \text{ V} \). Izračunajte napetost galvanskega člena pri standardnih pogojih ter napišite reakciji, ki potekata na katodi in anodi!

Rezultat: 0,777 V

3. Sestavili smo naslednji galvanski člen:

\[\text{Ca} | \text{Ca}^{2+} (0,001 \text{ M}) \parallel \text{Ag}^+ (2,0 \text{ M}) | \text{Ag} \]

Napišite reakciji, ki potekata na katodi in anodi ter izračunajte napetost galvanskega člena, če sta standardna elektrodna potenciala za kalcijev polčlen –2,84 V in srebrov polčlen +0,80 V!

Rezultat: 3,75 V

4. Sestavili smo naslednji galvanski člen:

\[\text{Ca} | \text{Ca}^{2+} \parallel \text{Ag}^+ | \text{Ag} \]

Izračunajte napetost galvanskega člena, če sta standardna elektrodna potenciala za kalcijev polčlen –2,84 V in srebrov polčlen +0,80 V! Za pripravo elektrolitov smo raztopili 2,0 g kalcijevga klorida (za kalcijev polčlen), oziroma 5,0 g srebrovega nitrata(V) (za srebrov polčlen) v 1 dm³ raztopine.

Rezultat: 3,60 V
5. Izračunajte napetost galvanskega člena, sestavljenega iz bakrovega in svinčevega polčlena pri 25 °C (koncentracija obeh elektrolitov je 1,0 mol/dm3). Napišite katodno in anodno reakcijo ter razložite, v kateri smeri se gibljejo elektroni po kovinskem vodniku! Izračunajte tudi molsko toploto za redoks reakcijo v tem členu! $E^0 (\text{Pb}^{2+} | \text{Pb}) = -0,126 \text{ V}$ in $E^0 (\text{Cu}^{2+} | \text{Cu}) = +0,337 \text{ V}$.

Rezultat: 0,463 V; – 89,4 kJ/mol

6. Izračunajte napetost sledečega galvanskega člena pri 30 °C:

\[\text{Zn} | \text{Zn}^{2+} (0,500 \text{ M}) \parallel \text{Cu}^{2+} (1,00 \text{ M}) | \text{Cu}\]

$E^0 (\text{Zn}^{2+} | \text{Zn}) = -0,763 \text{ V}$ in $E^0 (\text{Cu}^{2+} | \text{Cu}) = +0,337 \text{ V}$

Rezultat: 1,109 V

7. Izračunajte napetost galvanskega člena pri 25 °C, sestavljenega iz standardnega bakrovega in standardnega svinčevega polčlena! Katera elektroda je pri tem členu anoda? Napiši delni reakciji, ki potekata v polčlenih in celokupno reakcijo! $E^0 (\text{Pb}^{2+} | \text{Pb}) = -0,126 \text{ V}$ in $E^0 (\text{Cu}^{2+} | \text{Cu}) = +0,337 \text{ V}$.

Rezultat: 0,463 V

8. Kolikšna je napetost sledečega galvanskega člena pri 25 °C?

\[\text{Zn} | \text{Zn}^{2+} (0,40 \text{ M}) \parallel \text{Zn}^{2+} (5,0 \text{ M}) | \text{Zn}\]

Napišite reakciji, ki potekata na elektroda ter označite smer potovanja elektronov skozi kovinski vodnik! Standardni elektrodni potencial, $E^0 (\text{Zn}^{2+} | \text{Zn}) = -0,763 \text{ V}$.

Rešitev:
Galvanski člen ima dva cinkova polčlena (koncentracijski člen) s koncentracijama:

$[\text{Zn}^{2+}]_1 = 0,40 \text{ mol/dm}^3$ (anodni polčlen) in $[\text{Zn}^{2+}]_2 = 5,0 \text{ mol/dm}^3$ (katodni polčlen).

Delni reakciji sta:
\[
\text{Zn(s)} \rightarrow \text{Zn}^{2+}(\text{aq}) + 2\text{e}^- \text{ (anoda; oksidacija)}
\]
\[
\text{Zn}^{2+}(\text{aq}) + 2\text{e}^- \rightarrow \text{Zn(s) (katoda; redukcija)}
\]

Smer potovanja elektronov: anoda \rightarrow katoda

Potencial koncentracijskega člena pri 25 °C:
\[
E(\text{člen}) = E_2 - E_1 = E^0_{\text{člen}} - \frac{0,0592 \text{ V}}{2} \log \left(\frac{[\text{Zn}^{2+}]_{1}}{[\text{Zn}^{2+}]_{2}} \right) = -\frac{0,0592 \text{ V}}{2} \log \left(\frac{5,0 \text{ M}}{0,40 \text{ M}} \right) = 0,032 \text{ V}
\]

Odg.: Potencial tega koncentracijskega člena je 0,032 V.

9. Izračunajte napetost koncentracijskega galvanskega člena pri 25 °C, sestavljenega iz dveh cinkovih polčlenov, v enem polčlenu je koncentracija cinkovega klorida 1,00 mol/dm³, v drugem polčlenu pa 1,00·10⁻⁴ mol/dm³. Galvanski člen ponazorite s shematskim zapisom!
Rezultat: 0,12 V

10. Nekateri standardni elektrodni potenciali:

<table>
<thead>
<tr>
<th>Delna reakcija</th>
<th>(E^0) / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn})</td>
<td>-0,763</td>
</tr>
<tr>
<td>(\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe})</td>
<td>-0,440</td>
</tr>
<tr>
<td>(\text{Ni}^{2+} + 2e^- \rightarrow \text{Ni})</td>
<td>-0,250</td>
</tr>
<tr>
<td>(\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb})</td>
<td>-0,126</td>
</tr>
<tr>
<td>(2 \text{H}^+ + 2e^- \rightarrow \text{H}_2)</td>
<td>0,000</td>
</tr>
<tr>
<td>(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu})</td>
<td>+0,337</td>
</tr>
<tr>
<td>(\text{Ag}^+ + e^- \rightarrow \text{Ag})</td>
<td>+0,799</td>
</tr>
</tbody>
</table>

Iz dveh polčlenov in elektrolitskega ključa sestavimo galvanski člen. Polčlen 1 je svinčeva elektroda pomočena v raztopino Pb(NO₃)₂ s koncentracijo 1,00 mol/L. Polčlen 2 je srebrova elektroda pomočena v raztopino AgNO₃ s koncentracijo 1,00 mol/L.

a) Na kateri elektrodi (kako to elektrodo imenujemo s splošnim imenom?) bo potekala oksidacija?
b) Kako bo elektroda, na kateri bo potekala oksidacija, nabita? Odgovor utemeljite!
c) Katera kovina se bo izločala v elementarni obliki in zakaj?
d) Izračunajte napetost zgoraj omenjenega galvanskega člena pri 25 °C!
e) Kakšna bi bila napetost omenjenega galvanskega člena, če bi bila svinčeva elektroda v raztopini Pb(NO₃)₂ s koncentracijo 1,00·10⁻³ mol/L in srebrova elektroda v raztopini AgNO₃ s koncentracijo 0,100 mol/L?
f) Pri katerih od šestih kovin v gornji tabeli bi se sproščal vodik, če bi bile v stiku z raztopino HCl s koncentracijo 1 mol/L in zakaj?

Rezultat: a) anoda; b) negativna; c) Ag; d) 0,925 V; e) 0,955 V; f) Zn, Fe, Ni, Pb
ELEKTROLIZA

Reševanje nalog v tem poglavju zahteva razumevanje istih izrazov kot reševanje nalog v poglavjih Oksidacija in redukcija ter Galvanski členi.

1. Ponazorite elektrolizo taline CaCl₂ z urejenima delnima kemijskima enačbama! Shematično narišite celico in pojasnite elektrodne reakcije!

 Rešitev:
 anoda
 \[2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 \text{e}^- \]
 Kloridni ion se oksidira v klor.

 katoda
 \[\text{Ca}^{++} + 2 \text{e}^- \rightarrow \text{Ca}^0 \]
 Kalcijev ion se reducira v kalcij.

2. Koliko g kovine in koliko mL plina (pri normalnih pogojih) se je izločilo pri elektrolizi taline AlCl₃, če je preteklo 1 mmol elektronov. Napišite elektrodni reakciji!

 Rešitev:
 \[2 \text{AlCl}_3 \rightarrow 2 \text{Al}^{3+} + 6 \text{Cl}^- \]
 \[\text{K}^- : 2 \text{Al}^{3+} + 6 \text{e}^- \rightarrow 2 \text{Al} \]
 \[\text{A}^+ : 6 \text{Cl}^- \rightarrow 3 \text{Cl}_2 + 6 \text{e}^- \]
 \[2 \text{AlCl}_3 \rightarrow 2 \text{Al} + 3 \text{Cl}_2 \]

 2 mol Al je ekvivalentno 3 mol Cl₂ je ekvivalentno 6 mol e⁻

 \[\frac{\text{mol}}{3} \text{Al} \text{ je ekvivalentno } \frac{\text{mol}}{2} \text{Cl}_2 \text{ je ekvivalentno } 1 \text{mol e}^- \]

 \[m_{\text{Al}} = \frac{26,982 \text{mg} \cdot 0,001 \text{mol}}{3} = 9 \text{mg} = 9 \cdot 10^{-3} \text{g} \]
\[V_{Cl_2} = \frac{22,4 \text{ mL}}{2} = 11,2 \text{ mL} \]

Odg.: Pri prehodu 1 milimola elektronov se je na katodi izločilo \(9 \cdot 10^{-3} \) g Al in na anodi 11 mL Cl\(_2\).

3. Vodno raztopino CuSO\(_4\) elektroliziramo 30 minut. Napišite elektrodni reakciji na anodi in na katodi in izračunajte koliko g snovi se izloči na grafitni katodi pri toku 150 A!

Rešitev:

katoda: \(\text{Cu}^{2+} + 2 \text{e}^- \rightarrow \text{Cu}^0 \)

anoda: \(\text{H}_2\text{O} \rightarrow \frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \)

\[150 \text{ A} \cdot 1800 \text{ s} = 2,7 \cdot 10^5 \text{ As} \]

\[2 \times 9,65 \times 10^4 \text{ As} \text{ je ekvivalentno} \quad 1 \text{ mol Cu} \]

\[2,7 \times 10^5 \text{ As} \text{ je ekvivalentno} \quad \frac{2,7 \cdot 10^5 \text{ As mol}}{2 \cdot 9,65 \cdot 10^4 \text{ As}} = 1,4 \text{ mol} = 89 \text{ g Cu} \]

Odg.: Pri opisani elektrolizi se na grafitni katodi izloči 89 g bakra.

4. Vodno raztopino CuSO\(_4\) elektroliziramo 30 minut. Napišite elektrodni reakciji na anodi in na katodi in izračunajte koliko g snovi se izloči na grafitni anodi pri toku 15 A!

Rešitev:

katoda: \(\text{Cu}^{2+} + 2 \text{e}^- \rightarrow \text{Cu}^0 \)

anoda: \(\text{H}_2\text{O} \rightarrow \frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \)

\[15 \text{ A} \cdot 1800 \text{ s} = 2,7 \cdot 10^4 \text{ As} \]

\[4 \times 9,65 \times 10^4 \text{ As} \text{ je ekvivalentno} \quad 1 \text{ mol O}_2 \]

\[2,7 \times 10^4 \text{ As} \text{ je ekvivalentno} \quad \frac{2,7 \cdot 10^4 \text{ As} \cdot 31,998 \text{ g mol}}{9,65 \cdot 10^4 \text{ As} \cdot \text{mol} \cdot 4} = 2,24 \text{ g O}_2 \]

Odg.: Na grafitni anodi se izloči 2,2 g O\(_2\).
KOMBINIRANE NALOGE

1. Pri 200 °C je gostota dušika 1,2 g dm⁻³. Koliko znaša gostota omenjenega plina, če ob nespremenjenem tlaku zvišamo temperaturo na 700 °C?
Rezultat: 0,58 g dm⁻³

2. pH nasičene raztopine cinkovega hidroksida (Zn(OH)₂) je 9,1. Količen je topnostni produkt omenjenega hidroksida?
Rezultat: 1·10⁻¹⁵

3. Določeno maso KOH smo raztopili v 55,0 g vode, pri čemer je temperatura narasla za 15,0 °C in se je sprostilo 3777 J toplote? Kolikšna je molalna koncentracija KOH? Upoštevaj, da je specifična toplota raztopine enaka specifični toploti vode.
Rezultat: 1,68 mol kg⁻¹

*4. V tabeli je podana odvisnost gostote vodne raztopine ocetne kisline od koncentracije ocetne kisline pri 20 °C:

<table>
<thead>
<tr>
<th>c / (mol dm⁻³)</th>
<th>ρ / (g cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,083</td>
<td>0,999</td>
</tr>
<tr>
<td>0,215</td>
<td>1,000</td>
</tr>
<tr>
<td>0,465</td>
<td>1,002</td>
</tr>
<tr>
<td>0,585</td>
<td>1,003</td>
</tr>
</tbody>
</table>

a) Kolikšna je gostota vodne raztopine ocetne kisline, ko znaša koncentracija ocetne kisline 0,340 mol dm⁻³? Na grafu prikažite tudi, koliko znaša gostota topila!
b) Kaj je v omenjeni raztopini topilo in kaj topljenec? Koliko molov in koliko gramov topljenca je v 1,00 dm³ raztopine pri koncentraciji topljenca 0,340 mol dm⁻³? Upoštevaj po ustrezni podatki za gostoto, izračunajte koliko znaša masa enega kubičnega decimeta omenjene raztopine? Kolik je masni delež topljenca v raztopini?
c) Izračunaj pH vodne raztopine ocetne kisline s koncentracijo 0,340 mol dm⁻³, če je stopnja disociacije, α, 0,7 %!
d) Koliko molov NaOH je potrebnih za nevtralizacijo 10,0 cm³ raztopine ocetne kisline s koncentracijo 0,340 mol dm⁻³?
5. Koliko g kovine in koliko mL plina (pri normalnih pogojih) se je izločilo pri elektrolizi taline NaCl, če je preteklo 1,00 mmol elektronov? (Skicirajte celico in napišite elektrodni reakciji!)

Rezultat: 23,0 mg Na; 11,2 mL Cl₂

6. Izračunajte odstotno elementno sestavo CaCl₂ · 12 H₂O in maso vode, ki jo lahko veže 10,0 g CaCl₂!

Rešitev:
elementna sestava CaCl₂ · 12 H₂O

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass (g/mol)</th>
<th>Mass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>40,078</td>
<td>12,25%</td>
</tr>
<tr>
<td>Cl</td>
<td>2×35,453</td>
<td>21,67%</td>
</tr>
<tr>
<td>H</td>
<td>24×1,0079</td>
<td>7,39%</td>
</tr>
<tr>
<td>O</td>
<td>12×15,999</td>
<td>58,68%</td>
</tr>
</tbody>
</table>

327,162
Kombinirane naloge

\[\frac{n(\text{CaCl}_2)}{n(\text{H}_2\text{O})} = \frac{1}{12} \quad n(\text{H}_2\text{O}) = 12 \cdot n(\text{CaCl}_2) = 12 \cdot \frac{10,0 \text{ g}}{110,987 \text{ g/mol}} = 1,081 \text{ mol} \]

\[m(\text{H}_2\text{O}) = n(\text{H}_2\text{O}) \cdot M(\text{H}_2\text{O}) = 1,081 \text{ mol} \cdot 18,0148 \text{ g/mol} = 19,46\% \]

Odg.: 10,0 g CaCl\(_2\) lahko veže 19,5 g H\(_2\)O.

7. Mol sadre (CaSO\(_4\) \cdot 2 H\(_2\)O) odda pri segrevanju mol kristalne vode. Izračunajte procentno elementno sestavo sadre in masni delež oddane kristalne vode pri nastanku monohidrata!

Rešitev:

\[M(\text{CaSO}_4 \cdot 2 \text{H}_2\text{O}) = (40,078 + 32,066 + 95,994 + 4,0316) \text{ g/mol} = 172,1696 \text{ g/mol} \]

172,1696 g je 100 %

\[18,0148 \text{ g} = \frac{100 \cdot 18,0148 \text{ g/mol}}{172,1696 \text{ g/mol}} = 10,46 \% \]

Odg.: Pri prehodu dihidrata v monohidrat se zmanjša masa sadre za 10,46 %.

Elementna sestava dihidrata:

\[
\begin{align*}
\text{CaSO}_4 \cdot 2 \text{H}_2\text{O} & \quad M_r = 172,1696 \\
\text{Ca} & \quad \frac{40,078 \text{ g/mol}}{172,1696 \text{ g/mol}} = 23,28 \% \\
\text{S} & \quad \frac{32,066 \text{ g/mol}}{172,1696 \text{ g/mol}} = 18,62 \% \\
\text{O} & \quad \frac{95,994 \text{ g/mol}}{172,1696 \text{ g/mol}} = 55,76 \% \\
\text{H} & \quad \frac{4,0316 \text{ g/mol}}{172,1696 \text{ g/mol}} = 2,34 \% \\
\end{align*}
\]

100,00 %

8. Eter (\(\rho = 0,80 \text{ g/cm}^3\)) vsebuje 5 % H\(_2\)O. Koliko brezvodnega CaCl\(_2\) rabimo za sušenje 1,0 L etra, če predpostavimo, da nastane CaCl\(_2\) \cdot 12 H\(_2\)O?

Rešitev:

\[m_{\text{etra}} = V \cdot \rho = 10^3 \text{ mL} \cdot 0,80 \text{ g/mL} = 800 \text{ g etra} \]
\[M(\text{CaCl}_2) = 110,987 \text{ g/mol} \]

\[M(\text{CaCl}_2 \cdot 12 \text{H}_2\text{O}) = 327,1616 \text{ g/mol} \]

v 100 g etra je 5 g H\textsubscript{2}O \rightarrow v 800 g etra je 40 g H\textsubscript{2}O

110,987 g CaCl\textsubscript{2} veže 216,1776 g H\textsubscript{2}O

40 g H\textsubscript{2}O se veže z 20,5 g CaCl\textsubscript{2}

Odg.: Za sušenje 1,0 L etra potrebujemo 21 g CaCl\textsubscript{2}.

9. Organsko topilo vsebuje 3 % vode, ki jo moramo odstraniti s sušilnim sredstvom (Na\textsubscript{2}SO\textsubscript{4}). Koliko gramov ga moramo dodati v 1 L topila (\(\rho = 0,80 \text{ g/cm}^3 \)), da bo odstranjena vsa voda? Nastane Na\textsubscript{2}SO\textsubscript{4} \cdot 10 H\textsubscript{2}O.

Rešitev:
1 L topila je 800 g topila

3 % od 800 g = 24 g H\textsubscript{2}O

\[M(\text{Na}_2\text{SO}_4) = 142,042 \text{ g/mol} \]

142,042 g Na\textsubscript{2}SO\textsubscript{4} veže 180,148 g H\textsubscript{2}O

\[24 \text{ g H}_2\text{O veže} \frac{24 \cdot 142,042}{180,148} \text{ g} = 18,9 \text{ g} \]

Odg.: Da odstranimo vso vodo, rabimo 19 g Na\textsubscript{2}SO\textsubscript{4}.

10. Izračunajte pH 2,0 \cdot 10^{-2} M žveplove(VI) kisline, če predpostavimo popolno disociacijo (\(\alpha = 1 \))! Koliko mL te kisline porabimo za nevtralizacijo 1,0 g kalijevega hidroksida?

Rešitev:
\[\text{pH} = - \log \left[\text{H}^+ \right] = - \log 0,04 = 1,4 \]

1 g KOH: \[n(\text{KOH}) = \frac{1,0 \text{ g}}{M(\text{KOH})} = 1,78 \cdot 10^{-2} \text{ mol KOH} \]
Kombinirane naloge

\[M(\text{KOH}) = (39,098 + 15,999 + 1,0079) \text{ g/mol} = 56,1049 \text{ g/mol} \]

\[2 \text{KOH} + \text{H}_2\text{SO}_4 \rightarrow \text{H}_2\text{O} + \text{K}_2\text{SO}_4 \]

\[\frac{n(\text{H}_2\text{SO}_4)}{n(\text{KOH})} = \frac{1}{2} \rightarrow n(\text{H}_2\text{SO}_4) = \frac{1}{2} n(\text{KOH}) = \frac{1,782 \cdot 10^{-2} \text{mol}}{2} = 0,891 \cdot 10^{-2} \text{mol} \]

\[V(\text{H}_2\text{SO}_4) = \frac{n(\text{H}_2\text{SO}_4)}{c(\text{H}_2\text{SO}_4)} = \frac{0,891 \cdot 10^{-2} \text{mol}}{2,0 \cdot 10^{-2} \text{mol/L}} = 0,446 \text{L} \]

Odg.: pH 0,020 molarne H\(_2\)SO\(_4\) je 1,4; za nevtralizacijo 1,0 g KOH porabimo 0,45 L te kisline.

11. V ločenih posodah je 1 L 0,02 M H\(_2\)SO\(_4\) in 0,5 L 0,04 M Ca(OH)\(_2\). Izračunajte pH po mešanju!

Rešitev:

\[\text{H}_2\text{SO}_4 + \text{Ca(OH)}_2 \rightarrow \text{CaSO}_4 + 2 \text{H}_2\text{O} \]

0,02 mola H\(_2\)SO\(_4\) + 0,02 mola Ca(OH)\(_2\)

Odg.: pH po mešanju je 7.

12. Kaj je ekvivalentna masa kisline? V kakšni zvezi je z molsko maso?

13. Kaj je ekvivalent kisline? Kako smo določili ekvivalentno maso vinske kisline? (Največ 50 besed!)

14. V 100 g plinske zmesi je 70 g N\(_2\), 20 g O\(_2\) in 10 g H\(_2\). Kakšna je sestava zmesi po gorenju? Vodik zgori v vodo. Koliko molov H\(_2\) preostane?

Rešitev:

\[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \quad \frac{n(\text{H}_2)}{n(\text{O}_2)} = \frac{2}{1} \]

20 g O\(_2\) (0,625 mola O\(_2\))

10 g H\(_2\) (4,96 molov H\(_2\)); H\(_2\) je v prebitku (4,96 mol – 2·0,625 mol = 3,71 mol)
n(H₂O) = 2 \cdot n(O₂) = 2 \cdot 0,625 \text{ mol} = 1,25 \text{ mol}

m(H₂O) = 1,25 \text{ mol} \cdot 18,0148 \text{ g/mol} = 22,5 \text{ g}

m(H₂) po gorenju = 10 \text{ g} - 2,5 \text{ g} = 7,5 \text{ g}^*

Odg.: Zmes po gorenju vsebuje 70 g N₂, 7,5 g H₂ in 22,5 g H₂O. Po gorenju preostane še 3,7 mol H₂.

15. V zaprti posodi (V = 1,0 L) je kisik pri normalnih pogojih, v njem zgorni 1,0 g žvepla. Žveplo zgori v SO₂, nekaj kisika preostane.
 a) Koliko g kisika je v začetku v posodi?
 b) Koliko molov kisika je v začetku v posodi?
 c) Koliko molov kisika preostane po reakciji?
 d) Koliko g kisika preostane po reakciji?
 e) Koliko g SO₂ nastane?
 f) Koliko molov SO₂ nastane?
 g) Kakšen je skupni tlak plinov v posodi po reakciji (za T = 273 K)?
 h) Kakšen je masni delež posameznih komponent v zmesi pred reakcijo?
 i) Kakšen je masni delež posameznih komponent v zmesi po reakciji?

Rezultat: a) 1,4 g; b) 0,045 mol; c) 0,013 mol; d) 0,43 g; e) 2,0 g; f) 0,031 mol; g) 1 atm; h) 41 % S; 59 % O₂ i)17 % O₂; 83 % SO₂

16. Kaj je kolorimeter in kaj z njim merimo (največ 50 besed)?

17. Baker tvori dva oksida: bakrov(I) oksid in bakrov(II) oksid. Napišite formuli obeh oksidov in izračunajte, koliko g bakrovega(II) oksida vsebuje enako število atomov kisika kot 16 g bakrovega(I) oksida!

Rešitev:
 bakrov(I) oksid (Cu₂O): \(M = 143,091 \text{ g/mol} \)

 bakrov(II) oksid(CuO): \(M = 79,545 \text{ g/mol} \)

 \[
 \begin{align*}
 \frac{n(O)}{n(Cu₂O)} &= \frac{1}{1} \\
 n(O) &= n(Cu₂O) = \frac{m(Cu₂O)}{M(Cu₂O)} = \frac{16\text{ g}}{143,091\text{ g/mol}} = 0,1118 \text{ mol} \\
 n(CuO) &= n(O) = 0,1118 \text{ mol} \\
 m(CuO) &= 0,1118 \text{ mol} \cdot 79,545 \text{ g/mol} = 8,894 \text{ g} \\

 \end{align*}
 \]

Odg.: 8,9 g CuO vsebuje enako število atomov kisika kot 16 g Cu₂O.

*Izjemoma podamo rezultat z enim mestom „preveč“.
18. Mineral vsebuje 72,0 % CaCO₃, ostalo je temperaturno obstojna kamnina. Pri močnem segrevanju kalcijev karbonat razpade v kalcijev(II) oksid in ogljikov dioksid. Napišite urejeno enačbo reakcije in izračunajte, koliko g CaO nastane iz 50,0 g minerala pri takem segrevanju? Koliko tehta trdni del vzorca po segrevanju?

Rešitev:

\[
\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g)
\]

\[
M(\text{CO}_2) = 44,009 \text{ g/mol}
\]

\[
M(\text{CaCO}_3) = 100,086 \text{ g/mol}
\]

\[
M(\text{CaO}) = 56,077 \text{ g/mol}
\]

\[
n(\text{CaO}) = n(\text{CaCO}_3) = \frac{m(\text{CaCO}_3)}{M(\text{CaCO}_3)} = \frac{0,720 \cdot 50,0 \text{ g}}{100,086 \text{ g/mol}} = n(\text{CO}_2)
\]

\[
m(\text{CaO}) = n(\text{CaO}) \cdot M(\text{CaO}) = 20,2 \text{ g}
\]

\[
m(\text{CO}_2) = n(\text{CO}_2) \cdot M(\text{CO}_2) = 15,8 \text{ g}
\]

\[
m_{\text{minerala po razpadu}} = 50,0 \text{ g} - 15,8 \text{ g} = 34,2 \text{ g}
\]

Odg.: Iz 50,0 g minerala nastane 20,2 g CaO (in 15,8 g CO₂). Po razpadu tehta trdni del vzorca 34,2 g.

19. Na tehtnici z natančnostjo ± 0,01 g smo stehtali vzorec \(m_1 = 5,32 \text{ g}\), na drugi z natančnostjo ± 0,001 g pa vzorec \(m_2 = 0,123 \text{ g}\). Kateri vzorec smo stehtali z večjo relativno in katerega z večjo absolutno napako? Utemeljite odgovor računsko! Izračunajte obe absolutni in obe relativni napaki!

Rešitev:

\[
m_1 = (5,32 ± 0,01) \text{ g} \quad m_2 = (0,123 ± 0,001) \text{ g}
\]

abs. napaka za \(m_1\) = ± 0,01 g > abs. napaka za \(m_2\) = ± 0,001 g

rel. nap. za \(m_1\) = \[
\frac{0,01}{5,32} = 0,19 \cdot 10^{-2}
\]

rel. nap. za \(m_2\) = \[
\frac{0,001}{0,123} = 0,81 \cdot 10^{-2}
\]

Odg.: Vzorec \(m_2\) smo stehtali z večjo relativno napako, vzorec \(m_1\) pa z večjo absolutno napako.
20. a) Koliko tehta $5,3 \cdot 10^9$ molekul kisika?

b) Nek element tvori s kisikom spojino tipa A_2O_3. Izračunajte maso enega atoma tega elementa, če se z 10,05 g kisika spaja 23,45 g tega elementa!

Rešitev:

a) $5,3 \cdot 10^9$ molekul kisika tehta

$$5,3 \cdot 10^9 \text{g/mol} \cdot \frac{5,3 \cdot 10^9}{6,022 \cdot 10^{23} \text{mol}^{-1}} = 2,8 \cdot 10^{-13} \text{g}$$

Odg.: $5,3 \cdot 10^9$ molekul kisika tehta $2,8 \cdot 10^{-13} \text{g}$.

b) 10,05 g kisika se spaja z 23,45 g elementa A.

$$A_2O_3 \rightarrow \frac{n(A)}{n(O)} = \frac{2}{3} \rightarrow n(A) = \frac{2}{3} n(O) = \frac{2 \cdot 10,05 \text{g}}{3 \cdot 15,999 \text{g/mol}}$$

$$n(A_{atom}) = \frac{1}{6,022137 \cdot 10^{23} \text{mol}^{-1}}$$

$$m(A_{atom}) = \frac{3 \cdot 15,999 \text{g} \cdot \text{mol} \cdot 23,45 \text{g}}{2 \cdot \text{mol} \cdot 10,05 \text{g} \cdot 6,022137 \cdot 10^{23}} = 9,298 \cdot 10^{-23} \text{g}$$

Odg.: En atom elementa A tehta $9,298 \cdot 10^{-23} \text{g}$.

21. Največja dopustna koncentracija klora v zraku je 2,00 mg Cl$_2$/m3. Kolikšna je masa klora v 120 m3 zraka, ki vsebuje največjo dopustno količino tega plina? Kolikšno prostornino zavzema ta klor pri normalnih pogojih?

Rešitev:

v 1 m3 je 2 mg Cl$_2$

v 120 m3 je $240 \text{mg} = 0,240 \text{g Cl}_2$

$$P \cdot V = n \cdot R \cdot T \quad n = \frac{m}{M}$$

$$V = \frac{n \cdot R \cdot T}{P} = \frac{m \cdot P_0 \cdot V_0 \cdot T_0}{M \cdot T_0 \cdot P_0} = \frac{m \cdot V_0}{M} = \frac{0,240 \text{g} \cdot 22,414 \text{dm}^3/\text{mol}}{70,906 \text{g/mol}} = 75,9 \text{cm}^3$$

Odg.: 120 m3 zraka vsebuje 240 mg Cl$_2$, plin pa zavzema p.n.p. 75,9 cm3.
22. Maksimalna dopustna koncentracija živosrebrovih par v zraku je 0,1 mg/m². Koliko atomov živega srebra vsebuje kubični decimeter zraka, v katerem je onesnaženje z živim srebrom doseglo maksimalno dopustno vrednost?

Rešitev:
0,1 mg/m² je 10^{-4} mg/dm³

200,59 g je $6,022137 \cdot 10^{23}$ atomov

Odg.: 1 dm³ zraka, v katerem je onesnaženje z živim srebrom doseglo najvišjo dovoljeno stopnjo, vsebuje $3 \cdot 10^{14}$ atomov Hg.

23. Pri vajah smo uporabljali tako indikatorje kot katalizatorje. Pojasnite, kakšna je vloga enih in drugih! Napišite tudi po en primer za vsakega!

24. Pripravljeno imamo 0,70 % raztopino HCl.
 a) Kolikšna je molarna koncentracija te raztopine, če je njena gostota 1,03 kg/dm³?
 b) Kolikšen je molski delež HCl in kolikšen je molski delež H₂O v tej raztopini?
 c) Kolikšen je pH raztopine, če predpostavimo popolno disociacijo?
 d) Ali bi bil pH raztopine manjš ali večji, če disociacija ne bi bila popolna?
 e) Kolikšen volumen vodne raztopine NaOH s koncentracijo 0,20 mol/dm³ potrebujemo za popolno nevtralizacijo 20 cm³ raztopine HCl?
 f) Kolikšna je poraba 0,20 molarne vodne raztopine NaOH za popolno nevtralizacijo 20 cm³ vodne raztopine H₂SO₄, ki ima enako molarno koncentracijo kot raztopina HCl?

Rezultat: a) 0,2 mol/dm³; b) 3·10⁻³; 0,997; c) 0,7; e) 20 cm³; f) 40 cm³*

25. Odpipetiramo 10,0 cm³ koncentrirane raztopine HCl (w = 37 %) in jo razredčimo na 500 cm³.
 a) Kolikšna je molarna koncentracija koncentrirane HCl, če je gostota raztopine 1,19 kg/dm³?
 b) Kolikšna je njeni molski delež H₂O v razredčeni raztopini?
 c) Kolikšen je molski delež HCl in kolikšen je molski delež H₂O v razredčeni raztopini HCl?
 d) Kolikšen je pH razredčene raztopine HCl?
 e) Namiši enačbo reakcije, ki poteče med titracijo razredčene raztopine z NaOH!
 f) Kaj je ekvivalentna točka in kako jo določimo? Kolikšen je pH v ekvivalentni točki?

Rezultat: a) 12 mol/dm³; b) 0,24 mol/dm³; 0,85 %; c) 0,0042; 0,9958; d) 0,62

26. Pri raztapljanju 0,272 g vzorca, ki je vseboval Zn, v koncentrirani HCl se je nad vodo gladino razvilo 85 cm³ H₂ pri temperaturi 21 °C. Barometrski tlak je 98,4 kPa Odvisnost parcijalnega tlaka vode od temperature vode je podana v tabeli:

*Izjemoma podamo rezultat z enim mestom „preveč“.
<table>
<thead>
<tr>
<th>$T_{\text{voda}} [\text{°C}]$</th>
<th>$p_{\text{voda}} [\text{kPa}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2,1</td>
</tr>
<tr>
<td>20</td>
<td>2,3</td>
</tr>
<tr>
<td>22</td>
<td>2,6</td>
</tr>
<tr>
<td>24</td>
<td>3,0</td>
</tr>
</tbody>
</table>

a) Nariši graf parcijalnega tlaka vode v odvisnosti od njene temperature in grafično določi parcijalni tlak vode pri temperaturi, pri kateri smo izvajali eksperiment!

b) Uredi kemijsko enačbo:

\[\text{Zn}(s) + \text{H}^+ (aq) \rightarrow \text{H}_2(g) + \text{Zn}^{2+} (aq) \]

c) Kaj pomenijo oznake v oklepajih pri prejšnji kemijski enačbi?

d) Ali gre za redoks reakcijo, za reakcijo hidrolize ali za nevtralizacijo?

e) Ali se navedenim reagentom spremene oksidacijska števila? Če se spremene, jih definiraj!

f) Izračunaj, koliko Zn (masa) je bilo v vzorcu!

g) Kakšna je množina Zn, ki smo ga raztpapljali?

h) Kakšen je bil delež (%) primesi v vzorcu?

Rezultat: a) 2,4 kPa; b) 1,2,1,1; f) 0,22 g; g) 3,3·10^{-3} mol; h) 19,9 %

*27. Analiziramo zlitino, ki je pripravljena iz srebra in cinka; 5,00 g zlitine vržemo v koncentrirano HCl. Pri tem se sprosti 230 cm³ vodika. Izračunajte molski delež cinka in molski delež srebra v zlitini, če izmerimo volumen plina pri temperaturi 25,0 °C in tlaku 1,013×10^5 N/m². Kakšen je pomen tabele v tej nalogi?
Kombinirane naloge

<table>
<thead>
<tr>
<th>Delna reakcija</th>
<th>E^0 / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn}$</td>
<td>$-0,763$</td>
</tr>
<tr>
<td>$\text{Ag}^+ + e^- \rightarrow \text{Ag}$</td>
<td>$+0,799$</td>
</tr>
</tbody>
</table>

Rezultat: $0,188; 0,812$

*28. V prvi čaši je 20 mL svinčevega nitrata(V) s koncentracijo 0,1 mol/L, v drugi čaši je 20 mL AgNO$_3$ s koncentracijo 1×10^{-3} mol/L. V prvo čašo damo svinčevo elektrodo, v drugo čašo pa srebrovo elektrodo, povežemo z elektrolitskim ključem in izmerimo napetost. Potem, ko izmerimo napetost člena, dodamo v prvo čašo 0,68 g NaI, ki je v vodi zelo dobro topna sol. Dobro premešamo ter ponovno izmerimo napetost. Napetost se je po dodatku NaI spremenila za 118 mV (meritve so bile opravljene pri 25 °C). Spremembo volumna raztopine zaradi dodatka NaI lahko zanemarimo!

a) Izračunajte topnostni produkt svinčevega jodida!

b) Povejte (utemeljite) ali se je napetost po dodatku soli povečala ali zmanjšala?

<table>
<thead>
<tr>
<th>Delna reakcija</th>
<th>E^0 / V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Ag}^+ + e^- \rightarrow \text{Ag}$</td>
<td>$+0,799$</td>
</tr>
<tr>
<td>$\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb}$</td>
<td>$-0,126$</td>
</tr>
</tbody>
</table>

Rezultat: a) $7,2\times10^{-9}$; b) se poveča
NEKATERE POMEMBNE KONSTANTE

1 bar = 10^5 Pa
1 Pa = $N\cdot m^{-2}$

$P_0 = 101325$ Pa = 1 atm = 760 atm Torr = 760 mm Hg

$V_0 = 22,4$ L
$V_0 = 22414$ mL

$T_0 = 273,15$ K

$R = 6,24 \cdot 10^4$ Torr$\cdot cm^3\cdot mol^{-1}\cdot K^{-1}$
$R = 8,3145$ J$\cdot mol^{-1}\cdot K^{-1}$
$R = 8,314 \cdot 10^6$ Pa$\cdot cm^3\cdot mol^{-1}\cdot K^{-1}$

$N_A = 6 \cdot 10^{23}$
$N_A = 6,02 \cdot 10^{23}$
$N_A = 6,022137 \cdot 10^{23}$

$m_p = 1,6726 \cdot 10^{-24}$ g
$m_n = 1,6749 \cdot 10^{-24}$ g
$m_e = 9,1094 \cdot 10^{-28}$ g

$1,000$ cal = $4,184$ J

$e^- = 1,6021773 \cdot 10^{-19}$ As
$F = 9,6485309 \cdot 10^3$ As
PERIODNI SISTEM ELEMENTOV

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>39.098</td>
<td>40.078</td>
<td>44.956</td>
<td>47.88</td>
<td>50.942</td>
<td>51.996</td>
<td>54.938</td>
<td>55.847</td>
<td>58.033</td>
<td>58.933</td>
<td>63.546</td>
<td>69.723</td>
<td>72.61</td>
<td>74.922</td>
<td>78.96</td>
<td>79.904</td>
<td>83.80</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
</tr>
<tr>
<td>85.468</td>
<td>87.62</td>
<td>88.906</td>
<td>91.224</td>
<td>92.906</td>
<td>95.937</td>
<td>101.07</td>
<td>101.96</td>
<td>105.42</td>
<td>107.87</td>
<td>112.41</td>
<td>114.82</td>
<td>118.71</td>
<td>121.75</td>
<td>127.60</td>
<td>126.90</td>
<td>131.29</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
</tr>
<tr>
<td>132.905</td>
<td>137.337</td>
<td>138.915</td>
<td>178.49</td>
<td>186.95</td>
<td>183.85</td>
<td>186.21</td>
<td>190.2</td>
<td>192.22</td>
<td>195.08</td>
<td>197.97</td>
<td>200.59</td>
<td>204.38</td>
<td>207.2</td>
<td>208.98</td>
<td>[205]</td>
<td>[210]</td>
<td>[222]</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Unq</td>
<td>Unp</td>
<td>Unh</td>
<td></td>
</tr>
<tr>
<td>[223]</td>
<td>226.03</td>
<td>227.03</td>
<td>[231]</td>
<td>[232]</td>
<td>[233]</td>
<td></td>
</tr>
</tbody>
</table>

Štavilke v [] se nanašajo na najstabilnejši izotop.

* Lantanoidi

<table>
<thead>
<tr>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Pm</td>
<td>Sm</td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
<td>Yb</td>
<td>Lu</td>
</tr>
<tr>
<td>140.12</td>
<td>140.91</td>
<td>144.24</td>
<td>145.03</td>
<td>150.38</td>
<td>151.96</td>
<td>157.25</td>
<td>158.93</td>
<td>162.50</td>
<td>164.93</td>
<td>167.26</td>
<td>168.93</td>
<td>173.04</td>
<td>174.97</td>
</tr>
</tbody>
</table>

** Aktinoidi

<table>
<thead>
<tr>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
<th>101</th>
<th>102</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
<td>Bk</td>
<td>Cf</td>
<td>Es</td>
<td>Fm</td>
<td>Md</td>
<td>No</td>
<td>Lr</td>
</tr>
<tr>
<td>232.04</td>
<td>231.04</td>
<td>238.03</td>
<td>237.05</td>
<td>244.02</td>
<td>243.05</td>
<td>247.05</td>
<td>251.01</td>
<td>252.04</td>
<td>257.05</td>
<td>258.04</td>
<td>259.04</td>
<td>262.04</td>
<td></td>
</tr>
</tbody>
</table>
Vaje iz splošne kemije
Zbirka nalog
Drug, dopolnjena izdaja

Helena Abramovič, Blaž Cigič, Milica Kač, Lea Pogačnik,
Darja Rudan-Tasič, Mihaela Skrt, Nataša Šegatin

Ljubljana, 2006